Model Evaluation - EXPLAINED!

Поділитися
Вставка
  • Опубліковано 15 лис 2024

КОМЕНТАРІ • 19

  • @hopelesssuprem1867
    @hopelesssuprem1867 5 місяців тому

    Bro, this is a very good explanation. This information is rare. Thanks a lot

  • @TheGao1978
    @TheGao1978 3 роки тому +5

    Great video. Thanks! So if PR seems to work for both balanced and imbalanced data sets, why would you not just always use PR curves? When would ROC make more sense?

  • @Hassan.Wahba.97
    @Hassan.Wahba.97 3 роки тому +1

    We have been waiting for THIS!!!!! Thank you

  • @anonxnor
    @anonxnor 3 роки тому +1

    I've been looking at ROC AUC score for my unbalanced dataset. I will have to look at PR AUC instead, thank you.

  • @Clarissa2996
    @Clarissa2996 2 роки тому

    this helped me so much with my unbalanced data.

  • @NaimishBalaji
    @NaimishBalaji 3 роки тому +1

    Haha this is *exactly* what I was looking for (implementing the curves from scratch).
    Thanks mate!

    • @ivanallan8684
      @ivanallan8684 3 роки тому

      I know it's quite off topic but do anybody know of a good website to watch new movies online ?

    • @madduxsam2191
      @madduxsam2191 3 роки тому

      @Ivan Allan I would suggest Flixzone. Just google for it :)

    • @nicholasarthur5525
      @nicholasarthur5525 3 роки тому

      @Maddux Sam Definitely, have been watching on flixzone for since april myself =)

    • @ivanallan8684
      @ivanallan8684 3 роки тому

      @Maddux Sam thank you, signed up and it seems like they got a lot of movies there :) I really appreciate it !!

    • @madduxsam2191
      @madduxsam2191 3 роки тому

      @Ivan Allan happy to help xD

  • @teetanrobotics5363
    @teetanrobotics5363 3 роки тому

    these coding videos are lit

  • @RDK-2292
    @RDK-2292 3 роки тому

    Thanks so much, definitely needed this

  • @mohamedsouibgui3732
    @mohamedsouibgui3732 2 роки тому

    thank you so much

  • @ehsankhorasani_
    @ehsankhorasani_ 3 роки тому

    yet another awesome video. your amazing

    • @ehsankhorasani_
      @ehsankhorasani_ 3 роки тому

      one advice from me. please change your profile photo it makes your channel seems less professional.

  • @7justfun
    @7justfun 3 роки тому

    If I have a distance metric as the output of a model ( say euclidean distance in face verification for matching and mismatched pairs). How do you choose a cut off of the euclidean distance ? I guess we can use same concept only a low score is indicative of +ve match class and high score is indicative of a -ve mismatch true negative class

    • @7justfun
      @7justfun 3 роки тому

      one technique i did was to divide the eulidean distances by 100 ( so 15.37 for a mismatch would be .1537, and 3.23 for a match case would be .0323, then i would subtract it from 1 so that they look like probabilites of similarity , can i then use these to plot the ROC curves ? SO that i can choose a threshold with high TPR and low FPR.