Abstract Linear Algebra 11 | Positive Definite Matrices

Поділитися
Вставка
  • Опубліковано 16 січ 2025

КОМЕНТАРІ • 10

  • @eliasportenkirchner2531
    @eliasportenkirchner2531 7 місяців тому

    Vielen Dank für die tollen Videos! Deine Didaktik ist einfach unschlagbar!

  • @Ghetto_Bird
    @Ghetto_Bird 10 місяців тому +4

    🐐

  • @cooking60210
    @cooking60210 9 місяців тому

    This criterion for positive definiteness in terms of leading submatrices shows up in the Second Derivative Test, at least the way it's usually taught in the US. At a critical point the gradient is 0 so the function is approximated by a quadratic form. The critical point is a local minimum if the quadratic form is positive-definite.

    • @brightsideofmaths
      @brightsideofmaths  9 місяців тому

      My Multivariable Calculus Series covers this topic: tbsom.de/s/mc

  • @qingninghuo4047
    @qingninghuo4047 10 місяців тому

    For HW, let det(A - \lamda I)=0. Simplify to \lambda^2 - 5\lambda + 3 = 0. Solve for \lambda, we get \lambda = (1/2)(5 \pm \sqrt(13)). Eveidently, both \lambda values are real and >0.

  • @Yougottacryforthis
    @Yougottacryforthis 10 місяців тому

    there can be non-symmetrical PD matrices though. Just pick any diagoniziable matrix whose eigenvalues are positive.

    • @brightsideofmaths
      @brightsideofmaths  10 місяців тому

      I don't really get what you mean. I put the selfadjointness into the definition.

    • @Yougottacryforthis
      @Yougottacryforthis 10 місяців тому

      @@brightsideofmathsYeah and I'm trying to understand the motivation for it...
      If you define it the standard way you can have non symmetric matrices with postive definite quadratic form. So why add selfadjointness?

    • @brightsideofmaths
      @brightsideofmaths  10 місяців тому

      @@Yougottacryforthis It's not possible to have complex matrices with your stated property.