Tidyverse in R - tips & tricks

Поділитися
Вставка

КОМЕНТАРІ • 53

  • @tomhenry-datasciencewithr6047
    @tomhenry-datasciencewithr6047  4 роки тому +3

    ▶️ Top 7 R packages that are less well known - ua-cam.com/video/V-EssPrGPHg/v-deo.html
    🎉 *Subscribe* if you want more videos like this! - ua-cam.com/channels/b5aI-GwJm3ZxlwtCsLu78Q.html
    😃 *Comment* below to share which tricks you liked the most!!

  • @s-sugoi835
    @s-sugoi835 6 місяців тому

    Thanks, I work in a bank we migrated from SAS to R. This is so helpful.

  • @tjaeg
    @tjaeg 2 роки тому +2

    Please keep on doing these kind of videos!

  • @djangoworldwide7925
    @djangoworldwide7925 2 роки тому +1

    Super informative and advanced! Thank you. It's hard to find these days advanced tutorials on youtube

  • @spikeydude114
    @spikeydude114 2 роки тому +1

    Great video! Very dense with information and straight to the point!

  • @DM-py7pj
    @DM-py7pj 4 роки тому +3

    2:06 what purpose does ungroup() serve in this case?

    • @tomhenry-datasciencewithr6047
      @tomhenry-datasciencewithr6047  4 роки тому +1

      Technically it's not necessary! But I have gotten into the habit of 'ungroup()'ing every time after a group_by() because in other contexts - e.g. when the pipe continues with further mutates, summarizes, etc. - forgetting to ungroup() can result in the wrong outcomes. That's because summarize() by default only peels off the last variable in the group_by(). So I have developed the habit of always ungroup()ing after a group_by(), even when it's not necessary!

    • @DM-py7pj
      @DM-py7pj 4 роки тому

      @@tomhenry-datasciencewithr6047 Thanks. Great explanations. Subscribed. :-)

  • @dataslice
    @dataslice 4 роки тому +2

    Great tips, Tom! I'm definitely saving this video!

  • @bridgettsmith7206
    @bridgettsmith7206 2 роки тому

    Great tips. I appreciate that you have an index of time stamps for the content. I will be more easily able to reference this video later.

  • @tpflowspecialist
    @tpflowspecialist 3 роки тому

    Fantastic tydiverse data processing tips. Thank you!

  • @ZuluMonk
    @ZuluMonk 4 роки тому +1

    Great tips! Always nice to see better ways of doing things.

  •  3 роки тому

    This is great, so useful. Thanks!

  • @MarcelloNesca
    @MarcelloNesca 4 роки тому +1

    Great tips! Always looking for new ways of coding for datasets. Subscribed!

  • @aliramadan7425
    @aliramadan7425 4 роки тому +1

    Thank you. Learned so much!

  • @shreyaroraa2234
    @shreyaroraa2234 3 роки тому

    Very Nice video TOM. Future video idea - Moving from Sql to R common issues and functions comparisons

  • @nuk3man
    @nuk3man 3 роки тому +1

    Great video. Question; in tip nr. 9, what does "\\.?$" do in the first str_replace_all?

    • @tomhenry-datasciencewithr6047
      @tomhenry-datasciencewithr6047  3 роки тому +1

      Good question! It's a regular expression, and its purpose is to remove an optional '.' at the end of the string of text.
      For example, ' INC.' or ' CO.' or ' INC' or ' CO' would all be matched and replaced with the empty string (i.e. removed from the text). So 'QUANTAS CO.' (hypothetical) and 'QUANTAS CO' would both become 'QUANTAS'
      We can break down the "\\.?$" like this:
      \\. translates into \. - this says to match an actual '.' character. If we didn't have the '\\', it would match _any_ character because '.' is the regular expression code for any character.
      ? means 'optional' - so the actual '.' may or may not be present - if it is present, it will be matched.
      $ means the 'end of the string of text'.
      So putting it together, this means:
      'Replace
      ' ' # a space
      followed by 'INC' or 'CO' # (INC|CO)
      followed by an optional '.' # \\.?
      if all at the end of the string # $
      with
      the empty string # ""
      '
      More info on regular expressions here:
      r4ds.had.co.nz/strings.html#matching-patterns-with-regular-expressions

  • @Wherearethewildthings
    @Wherearethewildthings 4 роки тому +1

    Fantastic, Tom! Just subscribed, so helpful

  • @manohar-kg
    @manohar-kg 4 роки тому +1

    Very helpful video... Thanks

  • @ecarlosbc
    @ecarlosbc 3 роки тому

    Great tutorial Sir.!!!!!!!

  • @QuentinAndres06
    @QuentinAndres06 3 роки тому

    Tom, you are a boss.

  • @timmytesla9655
    @timmytesla9655 2 роки тому

    This is awesome. Thank you!

  • @clono1984
    @clono1984 4 роки тому +2

    Hi Tom, do you have the script available for download anywhere? Would love to revisit a few of the tips here. Really like your work. Thanks for sharing!
    -- Juan

    • @tomhenry-datasciencewithr6047
      @tomhenry-datasciencewithr6047  4 роки тому +1

      Sure! I've put a link at the end of the description. Here it is: gist.github.com/larsentom/727da01476ad1fe5c066a53cc784417b

    • @clono1984
      @clono1984 4 роки тому +1

      @@tomhenry-datasciencewithr6047 ahh! can't believe I missed it. Thank you Tom.

    • @tomhenry-datasciencewithr6047
      @tomhenry-datasciencewithr6047  4 роки тому

      @@clono1984 Glad you liked the tips! Let me know if you have others to share too!

    • @melissawong4125
      @melissawong4125 2 роки тому

      Thanks. Great tips! The github link is no longer working. Is there a new link?

  • @ahmed007Jaber
    @ahmed007Jaber 3 роки тому

    wow! mate love this one. keep it up
    for tip #18 how would you exclude some columns from this? i actually need to do a similar function to this

  • @alihashemian225
    @alihashemian225 2 роки тому

    I am having trouble accessing the script. Can someone help me?

  • @patricklogan6089
    @patricklogan6089 2 роки тому

    Good stuff

  • @heartheart5543
    @heartheart5543 3 роки тому

    link for the code cannot be accesed: 404

  • @AkashMathur-yc9nu
    @AkashMathur-yc9nu 4 роки тому +1

    Power Pack !

  • @educationulx
    @educationulx 3 роки тому

    My data(csv) is about historial heights between both genders of different ages .
    Here , my data contains heights of every years (1986-2019) & Age group > 2 , 8 , 16 , 19 , 22 . Also Male , Female sex . But I just want to select / work with only age 19 (gender male/both) to see their heights between 1986-2019 . How can I do it ? plz let me know .

    • @tomhenry-datasciencewithr6047
      @tomhenry-datasciencewithr6047  3 роки тому

      You can work with something like this:
      heights %>%
      filter(year %>% between(1986, 2019)) %>% # year >= 1986, year = 1986 & year % # change to just 'age_group == 19' or 'age_group %in% c(19)' if you want
      ggplot(aes(year, height, color = sex)) +
      geom_line() +
      facet_wrap(~age_group, ncol = 1)
      this assumes your data looks like this:
      year | age_group | sex | height
      2015 | 16 | Female | 150
      etc

    • @tomhenry-datasciencewithr6047
      @tomhenry-datasciencewithr6047  3 роки тому

      Then try removing / changing parts of this to see the effects!

  • @jaritos675
    @jaritos675 4 роки тому +8

    light RStudio theme not acceptable

  • @nkuatedivinely7369
    @nkuatedivinely7369 3 роки тому +2

    I just started watching some few videos for school purposes, they are great, but u are so fast😅, it will be a great thing if u could speak a little slowly and even repeat some few things, thanks

  • @Jelieto
    @Jelieto 4 роки тому +1

    you sound like daniel ricciardo

  • @Realtalkvideogames
    @Realtalkvideogames 3 роки тому

    FLIGHTS DOESNT WORK WITH NEW r