Proof: A Graph or its Complement is not Bipartite | Graph Theory, Bipartite Graphs

Поділитися
Вставка
  • Опубліковано 29 гру 2024

КОМЕНТАРІ • 12

  • @PunmasterSTP
    @PunmasterSTP 6 місяців тому

    Ah that was a neat trick! I didn't even think about how you'd have to get a three-cycle when you complement the partite sets.

  • @lachuvinoj1352
    @lachuvinoj1352 4 роки тому +3

    You explain really well, I understood the concept clearly. Thank you!!!

    • @WrathofMath
      @WrathofMath  4 роки тому

      Glad to hear it! Thanks so much for watching!

  • @samueldurkac7452
    @samueldurkac7452 8 місяців тому +1

    So is it true that if any graph G with at least five vertices is bipartite then the complement of G must not be bipartite ?

    • @samueldurkac7452
      @samueldurkac7452 8 місяців тому +1

      Well this is what I can deduce from the video (as not in form of some disjunction but as an implication).

    • @PunmasterSTP
      @PunmasterSTP 6 місяців тому

      Yes, I think that is correct.

  • @Kaviyugamithran
    @Kaviyugamithran 4 роки тому +1

    Please Say detialed about tree decompositions topic in graph theory sir.....

  • @لُطف-ب9خ
    @لُطف-ب9خ 3 роки тому

    Let G be a connected self-complementary graph. Then diam(G)=2 or 3.
    How to proof this theory??

  • @GBSZ12
    @GBSZ12 4 роки тому +2

    very helpful!! thank you!!

    • @WrathofMath
      @WrathofMath  4 роки тому

      Glad to hear it! You're welcome and thanks for watching, let me know if you ever have any questions!

  • @tshepomogagabe1533
    @tshepomogagabe1533 4 роки тому

    Thank You So Much!!!

    • @WrathofMath
      @WrathofMath  4 роки тому +1

      My pleasure! Thanks for watching!