Good video, but the statement that "simple machines reduce the amount of energy that is required for a task" is incorrect. The energy to do a task remains constant; a simple machine reduces the force required (or power required) to do something, but at a cost of applying that force over a longer distance. The force applied times the distance over which it is applied is the change in energy, which remains constant. In fact, the force x distance rule for calculating torque (as shown in the video) relies precisely on the conservation of energy.
@@minecraftbasics1366 in physics work is defined as Force(pushing or pulling an object) multiplied by Distance = Work. Basically what he is saying is you are sacrificing the amount of force you use for a longer distance. It just makes the work easier because you are using less force, but over a greater distance, so you are still consuming the same amount of energy but it is easier because you are using less force.
It also makes it seem like the work is the force x lever arm distance, when really the work done is the force times distance the edge of the teeter totter goes down.
I will use the example of the girl and the friend who weighs twice as much as her. In order to lift her friend she would have to sit twice as far from him in order to lift him, right? What he didn't mention is that her friend would only be lifted half the distance that she traveled. You can see it in the animation but he didn't explain that part very well. So in order to lift the friend say 1 meter she would need to travel 2 meters. And that is the trade off. So with the equation of force 1 * distance 1 = force 2 * distance 2 we have 150 lb * 2 meters = 300 lb * 1 meter. that represents the length of the lever, so if she travels downward say 4 meters on her end then the friend would only be moved upward 2 meters on his. The energy in the system is the same since energy cannot be destroyed nor created, only transferred from one form to another. Otherwise the lever would somehow be creating energy, which is isn't. So thats why what he said is incorrect. Hope that made sense. :)
So I just bought me one of those quadrillion light years long lever, but I still can't move the earth. Do I need gravity below me or something to apply a force?
2:11 - it should say : Torque , measured in Nm , is equal to the force applied over a perpendicular distance. The work done by these forces is acually zero, since the force and the direction are perpendicular.
No, work is correct in this case, although torque would have been acceptable as well. The video is a bit unclear, but what it's trying to say is that when the lever's HORIZONTAL distance increases, you have to push it further in the VERTICAL direction to get the same rotational effect. Since the force applied is vertical (perpendicular to the lever), the total force decreases because the vertical distance it acts over increases.
The amount of energy required to perform a task is always constant. Mechanical machines, such as lever, change the amount of force or displacement while product of the two (energy) is always constant (for ideal machines). This video needs correction at 1:17.
This was so helpful. My tech teacher didn't explain this well and I couldn't understand the homework at all. Now I can do it with some ease. Thank you so much
I am not even kidding, nobody on Earth was telling me why on Earth a simple machine can do this and lift such heavy things with so little force but Ted Ed came to the Rescue
And got it wrong. Sorry though, but they made a HUGE mistake in the explanation. "Basic devices that reduce the amount of energy required for a task" contradicts the energy conservation - the ONE LAW they should have explained correctly.
ÉTAPE 1 Détailler le chocolat en pépites. ÉTAPE 2 Préchauffer le four à 180°C (thermostat 6). Dans un saladier, mettre 75 g de beurre, le sucre, l'oeuf entier, la vanille et mélanger le tout. ÉTAPE 3 Ajouter petit à petit la farine mélangée à la levure, le sel et le chocolat. ÉTAPE 4 Beurrer une plaque allant au four et former les cookies sur la plaque. ÉTAPE 5 Pour former les cookies, utiliser 2 cuillères à soupe et faire des petits tas espacés les uns des autres; ils grandiront à la cuisson. ÉTAPE 6 Enfourner pour 10 minutes de cuisson. J'ajoute mon grain de sel
Me pareció un video muy interesante, tres aspectos que desconocía del tema fueron: 1.Toda palanca tiene 3 componentes principales: el brazo de potencia, el brazo de resistencia y el punto de apoyo. 2.Una palanca esta equilibrada cuando el producto de la fuerza de potencia y la longitud del brazo de potencia, es igual al producto de la fuerza de resistencia y la longitud del brazo de resistencia. 3.La palanca facilita el trabajo dispersando su peso en toda la extensión de los brazos de potencia y de resistencia (si una persona pesa dos veces más que tú, tienes que sentarte dos veces más lejos que él del centro para levantarlo).
Did he mean torque instead of work? Work is force applied over a displacement where the force vector is parallel to the displacement vector and the units are in joules. Where as, torque is force applied over a radius where the force vector is perpendicular to the "radius vector" and the units are in N*m. I could be missing something, please feel free to correct me if I'm wrong.
Infinity 1 man, im no english speaker so sorry if I make any gramatic error. But in the video they talk about work because we "can" see the movement of the machine as work, even thou torque has a lot more easy way to describe this phenomenom, work can be used as too, as we do the right conversions.
No, work is correct in this case, although torque would have been acceptable as well. The video is a bit unclear, but what it's trying to say is that when the lever's HORIZONTAL distance increases, you have to push it further in the VERTICAL direction to get the same rotational effect. Since the force applied is vertical (perpendicular to the lever), the total force decreases because the vertical distance it acts over increases.
John Dixon While work is an applicable concept in this situation, I think torque actually makes more sense in this context, as the radius * force idea makes it much more understandable to why you must increase your radius in order to make up for a decrease in force, as you must have a net torque of zero to have no angular acceleration.
You are right, I guess. But speaking of see-saws, gravitational force, work done and potential energy is more applicable and convenient. The moment you take it to outerspace, they become meaningless, torque should be used.
If we are really talking about the earth in space, for a very small acceleration requirement (i.e. to lift the earth very slowly) you only need a very small force. The faster you wanna make the earth get to a certain speed the more force you need to apply. Since in space there is no gravity, then the force needed is mass of earth x the acceleration. You need to choose the fulcrum, then you can calculate the distance from the fulcrum based on this formula: Your distance from fulcrum = the distance of the earth from the fulcrum * Mass of the earth * acceleration you want to move the earth with / (the force you are applying).
Wait, but if there is no gravity, how would a lever work? Like If you can't apply weight to the lever, surely it just isn't possible? Please correct me if I'm wrong, because I am very confused myself.
Also, Archimedes would have to travel/push down the arm for millions of light years to lift the Earth by 1centimeter. This is considering that the fulcrum is at the moon-distance as mentioned. Considering that Archimedes used a Rocket-Ship and pushed down the arm at close to light speed, he still would have to live for zillions of years to keep pushing. But time varies with gravity and Archimedes at the end of the lever must be in a Supervoid part of the Universe; so that zillions of years on LocalCluster-Galaxy-Sun-bound Earth = a human lifetime in the Supervoid. On a personal note: The other day I was standing on the short end of a long lever and a bacterial cell jumped on top of the other end lifting me up. True story.
I always thaught this was a philosophical Buddha type quote, but the beauty of it is both of science and wonder. Very much as two points on a grid make a line, three points make a plane, and so on and son four and five points make four and five demenshonal shape. Our understanding is only limited by the limits of our curiosity.
This is highly valuable (the conservation of energy and subsequently of power) when you have to mount in need ,the spare wheel to your car. Usually you have a telescopic (expandable) wrench that increases the lenght of the lever, let's say twice.Thus you have to apply only half of the force needed to rotate the wheel screws. Work (mechanical energy) equals Force times distance (W=F*d).
Me: IS THERE AN EARTHQUAKE OR SOMETHING? Parents: N E W S me: WHY IS THERE A BIG SEESAW IN SPACE LIFTING US? me: W H A T💀 parents: 😭💀 *dying of laughter*
1. Toda palanca tiene tres componentes principales: I El brazo de potencia II El de resistencia III El punto de apoyo. 2. La palanca esta equilibrada cuando, el producto de la fuerza de potencia y la longitud del brazo de potencia es igual al producto de la fuerza de resistencia y la longitud del brazo de resistencia 3 Para que una persona de 68 kg pueda levantar un bloque de 2,5 toneladas necesitaría estar a 10 metros de distancia del punto de apoyo de nuestra palanca
The explanation was going well, but it failed in the middle, but I could figure out why a lever works when he mentioned about work! What the lever does is that it allows you to do the same work you would do in lifting the weight, but with a trade-off: you do less force, but the distance you have to keep doing the force increases! So you have to lower the level a lot more to lift the heavy weight a little bit!
Work is force multiplied by distance given that it isn't being done at an angle. If it's being done at an angle, you need the cosine of the angle to calculate the work.
3 aspectos que desconocía sobre el tema: 1.- Desconocía el nombre adecuado de las partes de la palanca (brazo de potencia o fuerza, brazo de resistencia y punto de apoyo). 2.- Desconocía la relación e importancia que existe entre el peso y la distancia al punto de apoyo de las máquinas simples para poder mover algo más grande. 3.- Desconocía que el brazo de resistencia lo vamos a llamar al lado que queremos levantar (el objeto pesado y grande) y el brazo de potencia (fuerza) es el lado de nuestro peso o de donde vamos a ejercer la fuerza para levantar ese objeto.
Me pareció un video muy interesante, tres aspectos que desconocía del tema fueron: 1.Toda palanca tiene 3 componentes principales 2.Una palanca esta equilibrada cuando el producto de la fuerza de potencia y la longitud del brazo de potencia, es igual al producto de la fuerza de resistencia y la longitud del brazo de resistencia. 3.La palanca facilita el trabajo dispersando su peso en toda la extensión de los brazos de potencia y de resistencia.
1. el sube y baja es lo que llamamos maquina simple 2.la palanca esta equilibrada cuando el producto de la fuerza y la longitud del brazo de potencia es igual al producto de la fuerza de resistencia y la longitud del brazo de resistencia 3. el trabajo medido en Joules es igual a la fuerza aplicada por la distancia
지렛대에 숨어있는 강력한 수학에 대하여 알아보는 시간이 되었습니다. 힘의 규모와 받침점과의 거리간에 중요한 상관관계가 있다는 것 이것으로 힘을 손해보고 거리의 이득을 보든가, 힘을 이득보고 거리를 손해보는가 이것이 지렛대의 원리라는것을 배웠습니다. 이것이 너무 멋있는것 같습니다. 정말 재미있는것 같습니다. 좋은 시간이 되었습니다. 감사합니다. b*F=a*W 너무 간단하면서도 모든것을 말해줍니다. 너무 아름답습니다. 물리학도 정말 아름다운것 같습니다.
Would discovering the phenomena of buoyancy have contributed to the development of a builder's level ? Is it true that Archimedes invented the auger ? Why is the weight / ballast oftenly overlooked when cataloging simple machines?
Beauty and function, wonders meets science two as one melding together. Both become one as they never separated in first, the attract and repel in the illusion of it all.
Desconocía por completo que las palancas se componen del brazo de potencia, resistencia y punto de apoyo. Suena muy interesante que las palancas sirven mucho mas de lo que pensamos en nuestra vida cotidiana, ya que son muy útiles. también desconocía quien fue el que lo descubrió , el matemático Arquímedes.
Un dato que yo no sabia y aparte que no sabia los nombres de la palanca o de los componentes principales que son el brazo de potencia, el de resistencia y el punto de apoyo.
1.- Las palancas nos ayudan para facilitarnos el trabajo de levantar objetos pesados, se basa en principios de física. 2.-una palanca se describe por tener dos brazos (potencia y resistencia) y un punto de apoyo, esta palanca produce trabajo cuando el producto emplea una fuerza de potencia mayor a la fuerza de resistencia y los brazos midiendo lo mismo 3.- la relación entre el punto de apoyo, brazos y fuerza del producto, permite que podamos repartir el peso de algun objeto imposible de levantar a lo largo de la palanca y, si esta tiene un brazo de potencia mas grande se aplicará menor fuerza para levantar el brazo de resistencia
sin duda desconocía la importancia entre la diferencia de peso y distancia en la que se basan estas "maquinas simples". el sistema de poleas por el que se basa el cuerpo es mucho más interesante tomando estos datos en cuenta.
I don't know the context of Archimedes's conjecture, but do you think perhaps he was referring more to Newtonian physics in that the simple act of standing on the earth is "causing" the earth to apply equal/opposite force? To push your body off the earth requires you to push the earth etc etc
My 7 year old son loved this video, but he wanted to comment that, "the observable universe is only 93 billion light years, and you said a quadrillion light years which would be bigger than our universe by far. Google says that the Andromeda Galaxy is 2.5 million light years from us, nowhere near a quadrillion light years."
Es un video muy interesante y fácil de entender gracias a las ilustraciones y ejemplos tan concretos que dan. Siempre había tenido la inquietud de como los mayas había hecho para levantar y transportar piedras tan pesadas para construir las pirámides y con este video creo que empiezo a entender que estrategias utilizaban. Algunos puntos interesantes que no tenía en mente son: • Arquímedes describió el principio fundamental subyacente a la palanca. Y explico lo siguiente: el trabajo medido en Joules es igual a la fuerza aplicada por la distancia. • Las palancas son un tipo de máquinas simples, las cuales son dispositivos básicos que reducen la cantidad de energía requerida para una tarea, aplicando inteligentemente las leyes básicas de la física. • Las palancas tienen 3 características fundamentales: el brazo de potencia, el de resistencia y el punto de apoyo. Estas facilitan el trabajo dispersando el peso en toda la extensión de los brazos de potencia y resistencia. • Una persona que pesa 68 kilos con una palanca de 3,7 metros de largo podría equilibrar a un auto Smart o con una palanca de 10 metros para levantar un bloque de piedra de 2,5 toneladas, como lo usaron para construir las pirámides. • Los elementos básicos de las palancas y de otras máquinas simples están a nuestro alrededor en varios instrumentos y herramientas que usamos, como otros animales, para aumentar las chances de supervivencia o solo para facilitarnos la vida.
Will you actually be able to lift the earth? There's literally no gravity out there, so you would probably need a bit more force than your mass can generate, to push down on the lever
This is phenomenal stuff thank you!! Great education right here. You can teach kids about leverage in finance using this example too. It can help them understand the concept of using leverage as buying power
To be honest, I have never come across such a teacher like you sir!!
Good video, but the statement that "simple machines reduce the amount of energy that is required for a task" is incorrect. The energy to do a task remains constant; a simple machine reduces the force required (or power required) to do something, but at a cost of applying that force over a longer distance. The force applied times the distance over which it is applied is the change in energy, which remains constant.
In fact, the force x distance rule for calculating torque (as shown in the video) relies precisely on the conservation of energy.
Oh wow I definitely understand what you wrote
@@minecraftbasics1366 in physics work is defined as Force(pushing or pulling an object) multiplied by Distance = Work. Basically what he is saying is you are sacrificing the amount of force you use for a longer distance. It just makes the work easier because you are using less force, but over a greater distance, so you are still consuming the same amount of energy but it is easier because you are using less force.
@@jek438 oh thanks for explaining
It also makes it seem like the work is the force x lever arm distance, when really the work done is the force times distance the edge of the teeter totter goes down.
Yes, I can't use this video in my classroom because of that significant error. You should probably take this video down and try again.
The visuals on this is so well done. Thanks Ted Ed.
When the guy was lifting the earth, i was waiting for it to roll down the pole and squish him.... is that just me or??????
Bruh
Same here!
u r crazy.
@@nabayanchakma2419 No. Its just that we're used to earghs gravity where the big ball would roll down.
yeah that's just you...
Hey you just need to pull the moon closer, that's all.
Cute Kitty!!!!!!!!!!!! (Is that a Japanese name? I was born in “that place”
AWWWWWWW, KITTEN!
That was unexpected @Oracle Turret and MinecraftCalzone😈😈😈😈👾💩👻💀☠️👽😺😸😽😼😻😿😹🙀
You it's dog you mean
yeah then we will turn into an inhabitable planet
This was so beautiful! Well done to the artist and creators!
Archimedes head was huge!😂
Simple machines do NOT reduce the amount of energy needed for a task. The work done is the same. They reduce the amount of FORCE.
+Biran Falk-Dotan yeah, they should have said that
but how it is not the same thing?
I will use the example of the girl and the friend who weighs twice as much as her.
In order to lift her friend she would have to sit twice as far from him in order to lift him, right? What he didn't mention is that her friend would only be lifted half the distance that she traveled. You can see it in the animation but he didn't explain that part very well.
So in order to lift the friend say 1 meter she would need to travel 2 meters. And that is the trade off.
So with the equation of force 1 * distance 1 = force 2 * distance 2 we have
150 lb * 2 meters = 300 lb * 1 meter.
that represents the length of the lever, so if she travels downward say 4 meters on her end then the friend would only be moved upward 2 meters on his. The energy in the system is the same since energy cannot be destroyed nor created, only transferred from one form to another. Otherwise the lever would somehow be creating energy, which is isn't. So thats why what he said is incorrect.
Hope that made sense. :)
He said, it does NOT reduce the amount of work (energy) required.
@Szymon96335 [MOBILE] Levers tend to be more consistent in their results...
That's a good proportionate drawing real scale right there at the end.
thx you just saved my science assignment
So I just bought me one of those quadrillion light years long lever, but I still can't move the earth.
Do I need gravity below me or something to apply a force?
you need something to apply the force - on Earth you have gravity for the force, in space you can use something to create a kinetic energy
You'd also need for the fulcrum to be much denser and heavier than the earth unlike the moon or it would be the one to move.
nah just need some rocket boots :p
+Lars Harmsen do u want us to die
no there is no necessity of having a fulcrum heavier than
earth. although we can't take a small stone to lift the huge earth.😁😄
ted-ed videos...always leaving me goosebumped...
Metoo
@paschaholtry2756 only ted-ed fans would know this ✌️
2:11 - it should say : Torque , measured in Nm , is equal to the force applied over a perpendicular distance.
The work done by these forces is acually zero, since the force and the direction are perpendicular.
The force that does no work is the centripetal one. Torque forces do work
No, work is correct in this case, although torque would have been acceptable as well.
The video is a bit unclear, but what it's trying to say is that when the lever's HORIZONTAL distance increases, you have to push it further in the VERTICAL direction to get the same rotational effect. Since the force applied is vertical (perpendicular to the lever), the total force decreases because the vertical distance it acts over increases.
@@mdhuzaifa Don't you just love physics? How hard it is to explain?
Sarcasm alert
this was one THE BEST THINGS I HAVE LEARNED SO FAR, THANK YOU TEDed "WAITING FOR PART 10 OF THINK LIKE A CODER"
I dunno what I would di without ted-ed
These are just lifehacks!!!
note to self: when life (and uni) gets too complicated, always come back to Ted-Ed
1:18: energy required is NOT reduced with the lever, rather the force is reduced. Energy is always conserved. Work In = Work Out
The amount of energy required to perform a task is always constant. Mechanical machines, such as lever, change the amount of force or displacement while product of the two (energy) is always constant (for ideal machines). This video needs correction at 1:17.
This was so helpful. My tech teacher didn't explain this well and I couldn't understand the homework at all. Now I can do it with some ease. Thank you so much
Woo.
This channel deserves a subscription.
I am not even kidding, nobody on Earth was telling me why on Earth a simple machine can do this and lift such heavy things with so little force but Ted Ed came to the Rescue
And got it wrong. Sorry though, but they made a HUGE mistake in the explanation. "Basic devices that reduce the amount of energy required for a task" contradicts the energy conservation - the ONE LAW they should have explained correctly.
there are 3 classes of levers
the one featured is class 1: see-saw
class 2: wheelbarrow
class 3: baseball bat, fishing rod or tongs
Your hand is a third class
It would be great if they added in the other classes of levers. I would also low it if they made a video like this for each of the simple machines!
Agree
ÉTAPE 1
Détailler le chocolat en pépites.
ÉTAPE 2
Préchauffer le four à 180°C (thermostat 6). Dans un saladier, mettre 75 g de beurre, le sucre, l'oeuf entier, la vanille et mélanger le tout.
ÉTAPE 3
Ajouter petit à petit la farine mélangée à la levure, le sel et le chocolat.
ÉTAPE 4
Beurrer une plaque allant au four et former les cookies sur la plaque.
ÉTAPE 5
Pour former les cookies, utiliser 2 cuillères à soupe et faire des petits tas espacés les uns des autres; ils grandiront à la cuisson.
ÉTAPE 6
Enfourner pour 10 minutes de cuisson.
J'ajoute mon grain de sel
Une recette vraiment SEN-SA-TION-NEL
But to lift the Earth, you need to apply force. There's no gravity at the end of your effort arm, so you can't use your own weight as force.
facts
Okay so bring a can of fly spray, increase the lever by 10, and there you go
thats y they used the word hypothetically before they started
i mean also earth weights zero so no problem xD
but there is a possibility , he is trying to imagine
Me pareció un video muy interesante, tres aspectos que desconocía del tema fueron:
1.Toda palanca tiene 3 componentes principales: el brazo de potencia, el brazo de resistencia y el punto de apoyo.
2.Una palanca esta equilibrada cuando el producto de la fuerza de potencia y la longitud del brazo de potencia, es igual al producto de la fuerza de resistencia y la longitud del brazo de resistencia.
3.La palanca facilita el trabajo dispersando su peso en toda la extensión de los brazos de potencia y de resistencia (si una persona pesa dos veces más que tú, tienes que sentarte dos veces más lejos que él del centro para levantarlo).
I just wanna ask one question, where is the gravity??
Did he mean torque instead of work? Work is force applied over a displacement where the force vector is parallel to the displacement vector and the units are in joules. Where as, torque is force applied over a radius where the force vector is perpendicular to the "radius vector" and the units are in N*m. I could be missing something, please feel free to correct me if I'm wrong.
Infinity 1 man, im no english speaker so sorry if I make any gramatic error. But in the video they talk about work because we "can" see the movement of the machine as work, even thou torque has a lot more easy way to describe this phenomenom, work can be used as too, as we do the right conversions.
No, work is correct in this case, although torque would have been acceptable as well.
The video is a bit unclear, but what it's trying to say is that when the lever's HORIZONTAL distance increases, you have to push it further in the VERTICAL direction to get the same rotational effect. Since the force applied is vertical (perpendicular to the lever), the total force decreases because the vertical distance it acts over increases.
John Dixon While work is an applicable concept in this situation, I think torque actually makes more sense in this context, as the radius * force idea makes it much more understandable to why you must increase your radius in order to make up for a decrease in force, as you must have a net torque of zero to have no angular acceleration.
You are right, I guess. But speaking of see-saws, gravitational force, work done and potential energy is more applicable and convenient. The moment you take it to outerspace, they become meaningless, torque should be used.
La funciones de cada una de las distancias me pareció increíble ya que con las medidas exactas puedes levantar las cosas bien.
How heavy would a person have to be to lever the earth if they are 'standing' on jupiter?
That depends on where you set the fulcrum.
If we are really talking about the earth in space, for a very small acceleration requirement (i.e. to lift the earth very slowly) you only need a very small force. The faster you wanna make the earth get to a certain speed the more force you need to apply. Since in space there is no gravity, then the force needed is mass of earth x the acceleration. You need to choose the fulcrum, then you can calculate the distance from the fulcrum based on this formula: Your distance from fulcrum = the distance of the earth from the fulcrum * Mass of the earth * acceleration you want to move the earth with / (the force you are applying).
however, with the same conditions, a person with 80kg would accelerate earth at 7.66*10^-19 m/s²
Wait, but if there is no gravity, how would a lever work? Like If you can't apply weight to the lever, surely it just isn't possible? Please correct me if I'm wrong, because I am very confused myself.
GREAT EXPLANATIONS AND VIDEO. THANK YOU
Also, Archimedes would have to travel/push down the arm for millions of light years to lift the Earth by 1centimeter. This is considering that the fulcrum is at the moon-distance as mentioned. Considering that Archimedes used a Rocket-Ship and pushed down the arm at close to light speed, he still would have to live for zillions of years to keep pushing.
But time varies with gravity and Archimedes at the end of the lever must be in a Supervoid part of the Universe; so that zillions of years on LocalCluster-Galaxy-Sun-bound Earth = a human lifetime in the Supervoid.
On a personal note: The other day I was standing on the short end of a long lever and a bacterial cell jumped on top of the other end lifting me up. True story.
But also if he was using a rocket ship to push the lever, the long arm wouldn't need to be as long because a higher force could be applied
The wood will break.
YtubeUserr
I always thaught this was a philosophical Buddha type quote, but the beauty of it is both of science and wonder. Very much as two points on a grid make a line, three points make a plane, and so on and son four and five points make four and five demenshonal shape. Our understanding is only limited by the limits of our curiosity.
Awesome! I am excited to share with my students👏👏👏👍.
Yeah but... there's no "downward" gravitational pull on Archimedes in space, so he'd have to do more than just sit on it :)
Well, what if the other end of the lever is on a planet with similar gravity to earth?
Use 10 Archimedes
@@windywinend586 lmao
What if he got a big block and then kicked or pushed it onto the lever
Really nice...Helped me understand the concept
Thank you so much! This was so helpful :)
at 3:24 tower either that or lift a 100 kg object about 10 times higher than the height of the lever at its angle.
This is highly valuable (the conservation of energy and subsequently of power) when you have to mount in need ,the spare wheel to your car. Usually you have a telescopic (expandable) wrench that increases the lenght of the lever, let's say twice.Thus you have to apply only half of the force needed to rotate the wheel screws. Work (mechanical energy) equals Force times distance (W=F*d).
Very useful, thank you so much.
its amazing how a simple thing can have a lot of uses
You thaught me something in 5 minutes that my teacher couldn't in 6 weeks
Incrível. Se eu tivesse a oportunidade de aprender matemática assim, saberia muito mais. Simplesmente show!
Mathematic is difficult i dont understand by mona noorchaalida
Me: IS THERE AN EARTHQUAKE OR SOMETHING?
Parents: N E W S
me: WHY IS THERE A BIG SEESAW IN SPACE LIFTING US?
me: W H A T💀
parents: 😭💀 *dying of laughter*
It is not mathematics, it's physics
Let's go ..... We can now create extremely epic machines with the levers
The weight of the lever is not being considered. I wonder why?
give me lever and a fulcrum to place it on and i shall move the earth.
that's the rendition i always hear.
This vedio is very useful and it cleared all my doubts concerning lever
very nice explanation sir
A very elegant and informative video! Thank you :)
This is the kind of stuff country folk lean before they are 10 years old.
An ancient Roman once said " give me a lever and I'll move a mountain" .
Great video sir
Thanks for the information
Used one to Kill a fellow classmate
Quite good
Would definetly recommend
🤨
oh
Such a lovely video 😍
1. Toda palanca tiene tres componentes principales:
I El brazo de potencia
II El de resistencia
III El punto de apoyo.
2. La palanca esta equilibrada cuando, el producto de la fuerza de potencia y la longitud del brazo de potencia es igual al producto de la fuerza de resistencia y la longitud del brazo de resistencia
3 Para que una persona de 68 kg pueda levantar un bloque de 2,5 toneladas necesitaría estar a 10 metros de distancia del punto de apoyo de nuestra palanca
Thank you
The explanation was going well, but it failed in the middle, but I could figure out why a lever works when he mentioned about work! What the lever does is that it allows you to do the same work you would do in lifting the weight, but with a trade-off: you do less force, but the distance you have to keep doing the force increases! So you have to lower the level a lot more to lift the heavy weight a little bit!
Work is force multiplied by distance given that it isn't being done at an angle. If it's being done at an angle, you need the cosine of the angle to calculate the work.
no conocia los diferentes tipos de palancas y wooow ahora que las conozco me quede imprecionada muy buena exlicacion y traduccion
Very,good explination and very good video
listen to the music at the end at 1.25 times speed, kinda spoopy right?
you have a great name
3 aspectos que desconocía sobre el tema:
1.- Desconocía el nombre adecuado de las partes de la palanca (brazo de potencia o fuerza, brazo de resistencia y punto de apoyo).
2.- Desconocía la relación e importancia que existe entre el peso y la distancia al punto de apoyo de las máquinas simples para poder mover algo más grande.
3.- Desconocía que el brazo de resistencia lo vamos a llamar al lado que queremos levantar (el objeto pesado y grande) y el brazo de potencia (fuerza) es el lado de nuestro peso o de donde vamos a ejercer la fuerza para levantar ese objeto.
Me pareció un video muy interesante, tres aspectos que desconocía del tema fueron:
1.Toda palanca tiene 3 componentes principales
2.Una palanca esta equilibrada cuando el producto de la fuerza de potencia y la longitud del brazo de potencia, es igual al producto de la fuerza de resistencia y la longitud del brazo de resistencia.
3.La palanca facilita el trabajo dispersando su peso en toda la extensión de los brazos de potencia y de resistencia.
Beautiful
1. el sube y baja es lo que llamamos maquina simple
2.la palanca esta equilibrada cuando el producto de la fuerza y la longitud del brazo de potencia es igual al producto de la fuerza de resistencia y la longitud del brazo de resistencia
3. el trabajo medido en Joules es igual a la fuerza aplicada por la distancia
Its the natural phenomenons behind the mathematical principles that make the world go round.
Seesaw Effect.
...please tell me this is gonna summon the fandom.
*SEESAW EFFECT*
0Of i read "phandom" and almost yelped
sorry.
great work
지렛대에 숨어있는 강력한 수학에 대하여 알아보는 시간이 되었습니다. 힘의 규모와 받침점과의 거리간에 중요한 상관관계가 있다는 것 이것으로 힘을 손해보고 거리의 이득을 보든가, 힘을 이득보고 거리를 손해보는가 이것이 지렛대의 원리라는것을 배웠습니다. 이것이 너무 멋있는것 같습니다. 정말 재미있는것 같습니다. 좋은 시간이 되었습니다. 감사합니다. b*F=a*W 너무 간단하면서도 모든것을 말해줍니다. 너무 아름답습니다. 물리학도 정말 아름다운것 같습니다.
Bahasa apa nih ???
Korean
Would discovering the phenomena of buoyancy have contributed to the development of a builder's level ?
Is it true that Archimedes invented the auger ?
Why is the weight / ballast oftenly overlooked when cataloging simple machines?
Beauty and function, wonders meets science two as one melding together. Both become one as they never separated in first, the attract and repel in the illusion of it all.
1 existen diferentes tipos de palancas
2 el juego que conocemos como sube y baja es una palanca muy eficiente
i learned this back in grade 6 lol. these simple machines are crazyyy
Desconocía por completo que las palancas se componen del brazo de potencia, resistencia y punto de apoyo. Suena muy interesante que las palancas sirven mucho mas de lo que pensamos en nuestra vida cotidiana, ya que son muy útiles. también desconocía quien fue el que lo descubrió , el matemático Arquímedes.
Thanks for the video, very helpful! :)
Fulcrum
ted ed is the best
existen diferentes tipos de palancas y diferente relacion entre el punto de apoyo
Un dato que yo no sabia y aparte que no sabia los nombres de la palanca o de los componentes principales que son el brazo de potencia, el de resistencia y el punto de apoyo.
I HAVE LEARNED EVERTHING
You are amazing
I got it 👍👍✅
Thanks a bunch 🌸
... and in the whole video, it didn't say that there are three types of lever.
Actually there are 4
1: When
2: Did
3: I
4: Ask?
@@Oweladon This video is about levers. I'd say that it PROBABLY should mention how many types there are. THIS IS RELEVANT TO THE VIDEO.
@@ME0WMERE
They at least explained the basics of the lever
@@elliechuanimates Yes, and that is good, but I'd say how many levers it has is pretty important
@@ME0WMERE i think that would be a different video. Dont want to overcomplicate it. it would make this video less useful
Well done.
1.- Las palancas nos ayudan para facilitarnos el trabajo de levantar objetos pesados, se basa en principios de física.
2.-una palanca se describe por tener dos brazos (potencia y resistencia) y un punto de apoyo, esta palanca produce trabajo cuando el producto emplea una fuerza de potencia mayor a la fuerza de resistencia y los brazos midiendo lo mismo
3.- la relación entre el punto de apoyo, brazos y fuerza del producto, permite que podamos repartir el peso de algun objeto imposible de levantar a lo largo de la palanca y, si esta tiene un brazo de potencia mas grande se aplicará menor fuerza para levantar el brazo de resistencia
We also need a strong material lever in order to lift earth
Thanks that really helped!
sin duda desconocía la importancia entre la diferencia de peso y distancia en la que se basan estas "maquinas simples". el sistema de poleas por el que se basa el cuerpo es mucho más interesante tomando estos datos en cuenta.
I thought Archimedes was talking about moving the earth with a pulley, but must've remembered it wrong.
I don't know the context of Archimedes's conjecture, but do you think perhaps he was referring more to Newtonian physics in that the simple act of standing on the earth is "causing" the earth to apply equal/opposite force? To push your body off the earth requires you to push the earth etc etc
My 7 year old son loved this video, but he wanted to comment that, "the observable universe is only 93 billion light years, and you said a quadrillion light years which would be bigger than our universe by far. Google says that the Andromeda Galaxy is 2.5 million light years from us, nowhere near a quadrillion light years."
I never knew you could go back like that and then you would go down
Es un video muy interesante y fácil de entender gracias a las ilustraciones y ejemplos tan concretos que dan. Siempre había tenido la inquietud de como los mayas había hecho para levantar y transportar piedras tan pesadas para construir las pirámides y con este video creo que empiezo a entender que estrategias utilizaban. Algunos puntos interesantes que no tenía en mente son:
• Arquímedes describió el principio fundamental subyacente a la palanca. Y explico lo siguiente: el trabajo medido en Joules es igual a la fuerza aplicada por la distancia.
• Las palancas son un tipo de máquinas simples, las cuales son dispositivos básicos que reducen la cantidad de energía requerida para una tarea, aplicando inteligentemente las leyes básicas de la física.
• Las palancas tienen 3 características fundamentales: el brazo de potencia, el de resistencia y el punto de apoyo. Estas facilitan el trabajo dispersando el peso en toda la extensión de los brazos de potencia y resistencia.
• Una persona que pesa 68 kilos con una palanca de 3,7 metros de largo podría equilibrar a un auto Smart o con una palanca de 10 metros para levantar un bloque de piedra de 2,5 toneladas, como lo usaron para construir las pirámides.
• Los elementos básicos de las palancas y de otras máquinas simples están a nuestro alrededor en varios instrumentos y herramientas que usamos, como otros animales, para aumentar las chances de supervivencia o solo para facilitarnos la vida.
no sabia cual era la distancia que existe entre la luna y la tierra
Amazing and very Engaging. Truly Inspirational.
Will you actually be able to lift the earth? There's literally no gravity out there, so you would probably need a bit more force than your mass can generate, to push down on the lever
This is phenomenal stuff thank you!! Great education right here. You can teach kids about leverage in finance using this example too. It can help them understand the concept of using leverage as buying power
Thanks