Adding Functions (2 of 2: Linear + Quadratic)

Поділитися
Вставка
  • Опубліковано 28 січ 2025

КОМЕНТАРІ • 20

  • @SlingerDomb
    @SlingerDomb 5 років тому +1

    speaking from a guy who studying education degree. I got to learn a whole lot from you ! keep up the good work. It helps a lot !

  • @minggan2990
    @minggan2990 5 років тому +1

    This doesnt exactly help. Would pay to explain why adding a 2nd order polynomial to a linear function results in a 2nd order polynomial. Is this always the case?

    • @ericvillarreal937
      @ericvillarreal937 5 років тому +1

      A lot of things are easier to explain from a graphing perspective; in this case, to answer your question, you'd want to look at it from an algebraic point of view. If you add a 2nd order polynomial to a linear function, you will always keep that x^2 term. There is no linear function that will be able to negate the x^2 from the polynomial; therefore, the resulting function is also a 2nd order polynomial. So, yes--this is always the case!

    • @minggan2990
      @minggan2990 5 років тому

      @@ericvillarreal937 Thanks for the clear reply. Yeah i figured that from the related algebra. My point was more that I hoped for him to more give a good reason graphically why the resulting graph is a 2nd order polynomial. Regardless, I think his videos are awesome. :)

  • @Mads026p
    @Mads026p 5 років тому +2

    Why is it (x + 2)(x - 1) and not (x - 2)(x + 1) since the parabola intersects on positive 1 and negative 2 on the x-axis?

    • @poisonoushallucinations3168
      @poisonoushallucinations3168 5 років тому +7

      If you think of finding the x intercepts algebraically, you would have to let y = 0 and hence let (x+2)(x-1)=0. To solve that equation, either x + 2 = 0 or x - 1 = 0. If x + 2 = 0, x = -2 (An x intercept) and if x - 1 = 0, x = 1 (Another x intercept)

    • @Mads026p
      @Mads026p 5 років тому +1

      Shoot, I didn’t think of that, now it’s very clear to me why it is that way. Thanks!

  • @emree5962
    @emree5962 5 років тому +7

    Great video! Can you make one for dividing functions; drawing (sinx) /(x+1)

  • @mamao231
    @mamao231 5 років тому

    You inspire me too much!

  • @mamao231
    @mamao231 5 років тому

    Perfect! Awesome!! You are the best.

  • @Nikkikkikkiz
    @Nikkikkikkiz 5 років тому

    not 3 quarters, 0.73205080756

  • @funfus90
    @funfus90 5 років тому +1

    What programme are you using?

  • @LukeFlavel
    @LukeFlavel 4 роки тому +1

    My maths teacher dotes on you and so do I ❤

  • @harshdiwakar8925
    @harshdiwakar8925 5 років тому

    Can you help me with Couchy Mean Value Theorem? Your lectures and explanations are amazing

  • @danielrodriguezperez8655
    @danielrodriguezperez8655 5 років тому

    I just want to have a teacher like you!

  • @mmmssbb23
    @mmmssbb23 5 років тому

    Please go back to the old school type,instead of this LCD projector

  • @bigjust7016
    @bigjust7016 5 років тому

    Great!

  • @omaryoussef4190
    @omaryoussef4190 5 років тому +1

    first comment from Morocoo

  • @maxim9280
    @maxim9280 5 років тому +1

    That's some 5th school year material in a Russian school