Order Finding: Quantum algorithm

Поділитися
Вставка
  • Опубліковано 9 лис 2024

КОМЕНТАРІ • 13

  • @mkermaou
    @mkermaou Рік тому

    it was helpful thank you :)

  • @DeanK1905
    @DeanK1905 7 років тому

    Great video, would love if you were able to do an example video on factoring a small number using order finding, phase estimation etc. Struggling a bit with it.

    • @DeanK1905
      @DeanK1905 7 років тому

      Very helpful. Thank you very much!

  • @vyshnavv2209
    @vyshnavv2209 6 років тому

    Thanks it was helpful

  • @a1ang0r85
    @a1ang0r85 4 роки тому

    At 5:03, should it be the summation times the exponent e times the "alpha k+1" with the eigenvector?

  • @a1ang0r85
    @a1ang0r85 4 роки тому

    At 10:20, how can you get the exponential function after the unitary operator acting on the vector j times? !0:51, why we have to consider the case j=k, they are not inner product, not about orthogonality.

  • @a1ang0r85
    @a1ang0r85 4 роки тому

    from 8:58 to 9:06, I don't understand the case the summation is qual to 1) r if k=0, 2) otherwise 3) =0 if k is not equal to 0, can you give more explanation?

  • @Davide_sd
    @Davide_sd 6 років тому

    Very helpful video. Just one question: how did you come up with 5:05 ?

    • @Davide_sd
      @Davide_sd 6 років тому

      @@QuantumGyan Yes, it makes sense! Just expand the two summations and inspect them. Thank you very much!!! :)

    • @damianwu3965
      @damianwu3965 3 роки тому

      @@QuantumGyan I cannot connect this with 4:52. Can you give this explicit or in more detailed way, please?

    • @damianwu3965
      @damianwu3965 3 роки тому

      ​@@QuantumGyan Oh, now I see it, but only for a special case (e.g. r=8). It's hard for me to derive it for a general case, without using a special case. Anyway, thank you for your help and your work. :)

  • @snowprinceintardis
    @snowprinceintardis 4 роки тому

    I know that there is math going on, and I can't prove it but I'm sure there is also some meth going on.

  • @larry_ledernier
    @larry_ledernier 3 роки тому

    Viet?