Something's wrong here...

Поділитися
Вставка
  • Опубліковано 19 гру 2024

КОМЕНТАРІ • 28

  • @steve112285
    @steve112285 20 годин тому +20

    Since the solution to cos(x)=y is x=(+ or -)arccos(y)+2*pi*k, I'm thinking you need a 'plus or minus' in front of the -x-pi/2.

    • @沈博智-x5y
      @沈博智-x5y 19 годин тому +4

      yeah. truth is x(t) = Ae^((+ or - )t) + 2npi - pi/2 when you take this into consideration.
      plugging it back in, you do get the equation to work still (even for the + case)

  • @shreeniketupasani1957
    @shreeniketupasani1957 19 годин тому +6

    nice video... love the advent calendar series

  • @crazydog1750
    @crazydog1750 15 годин тому +4

    My main takeaway from all the experience I’ve ever had with differential equations is that if you simply guess that the solution is some variation of the exponential equation, you’ll probably be correct.

  • @auseziegieteursucraineiwst3680
    @auseziegieteursucraineiwst3680 17 годин тому +9

    How about integral sin(dx)

    • @crazydog1750
      @crazydog1750 15 годин тому +2

      I would LOVE to see a step-by-step solution to this.

    • @AriosJentu
      @AriosJentu 10 годин тому +2

      It’s not as hard, as like e^(dx). Just like inverse operation of exponential or trig derivative. We can use power series, as usual, to create close form for that

  • @mr.inhuman7932
    @mr.inhuman7932 17 годин тому +1

    Nearly got through the Advent Calender! Keep up the work!

  • @timhaines3877
    @timhaines3877 4 години тому +1

    That equation could also be written cos(x') = (cos(x))' which feels like even more of a "freshman's dream".

  • @JavIkVR
    @JavIkVR 14 годин тому +2

    another weird cursed problem was solved🚬🗿

  • @bridgeon7502
    @bridgeon7502 19 годин тому +1

    5:14 how come you can cancel the dt's?

    • @fullfungo
      @fullfungo 18 годин тому +9

      It’s the opposite of the chain rule:
      df/dt = df/dx•dx/dt
      You can look up “Integration by substitution” on Wikipedia. It contains a complete proof.

    • @ultrio325
      @ultrio325 13 годин тому

      it's called magic

  • @JacquesRGAO
    @JacquesRGAO 6 годин тому +1

    however, -sin(x)=cos(-pi/2-x) or cos(pi/2+x) as cosine function is even, thus the o.d.e. to be solved is x'=2kpi \pm pi/2 \pm x (:

  • @sierpinskibrot
    @sierpinskibrot 2 години тому

    Great video great explanation

  • @Happy_Abe
    @Happy_Abe 20 годин тому +1

    Proven the shit!

  • @海伯庵
    @海伯庵 Годину тому

    Has Papa Flammy finally integrated e^(x^2) yet? Or is he being an engineer about it?

  • @trwn87
    @trwn87 20 годин тому +5

    Neat differential equation! But how about “x = cos x”? The result is an irrational (and even transcendent!) number that might be worth a mention on your channel. :D

    • @PapaFlammy69
      @PapaFlammy69  19 годин тому +3

      already done :)

    • @trwn87
      @trwn87 15 годин тому +1

      @@PapaFlammy69 Okay, then you were ahead of me. But maybe you can take that, make it 10 times harder and then show it off. :D

    • @trwn87
      @trwn87 15 годин тому +1

      @@PapaFlammy69 And I just realized, you ay have probably done the derivative of x^x before, but can you take the NTH derivative of it in general? No recursion allowed!

    • @White-uq9fr
      @White-uq9fr 13 годин тому

      ​@@trwn87 Just use the Faà di Bruno's formula for exp(x*lnx) and then the Leibniz rule for x*lnx.

  • @edmundwoolliams1240
    @edmundwoolliams1240 13 годин тому

    You didn't "prove the shit" out of it, because you didn't differentiate e^-t the way that a 'real man' would.

  • @hanskywalker1246
    @hanskywalker1246 12 годин тому

    Versteh ich nicht

  • @creativename.
    @creativename. 20 годин тому

    very early