Young's Inequality | A Geometric Proof of Young's Inequality

Поділитися
Вставка
  • Опубліковано 24 лют 2020
  • #youngsinequality #minkowski #holder
    A nice proof of Young's Inequality for Products using Young's Inequality for Increasing Functions.
    Typically comes up in lp space work in analysis.
    Heavily related to Young's Inequality for inner products, for integral operators, Minkowski's Inequality and Holder's Inequality
    CHECK OUT OTHER TYPES OF VIDEOS:
    ================================
    GRE Math Subject Test: • Improve Your Math Subj...
    Putnam Math Competition: • Putnam Math Competitio...
    Math Theorem Corner: • Math Theorems | Learn ...
    Math Problems Corner: • Problem Solving Strate...
    Math Insights: • Learn New Math Techniq...
    Academic Advice: • Academic Advice for Un...
    GET MY BOOK ON AMAZON!!
    ========================
    "Number Theory Towards RSA Cryptography in 10 Undergraduate Lectures"
    www.amazon.com/Number-Theory-...
    CHECK ME OUT ON THE INTERNET!!
    ==============================
    Website: www.mohamedomar.org
    Twitter: @mohamedomarphd
    Instagram: profomarmath
    UA-cam: / profomarmath
    And of course, subscribe to my channel!

КОМЕНТАРІ • 32

  • @yashvardhan2093
    @yashvardhan2093 3 роки тому +2

    Useful in deriving Hölder’s, nice video Prof!!

  • @MyOneFiftiethOfADollar
    @MyOneFiftiethOfADollar 2 роки тому +4

    I had seen the dry unmotivated algebraic proof of this inequality and it did not really stick for me.
    The inverse function integral interpretation way you proved is easier to grasp. Also connection to AM-GM a nice mnemonic. I liked your “hold your head this way” to be aware of inverse function without really graphing it 😀
    Do you know much about the mathematician Young?

  • @shrivardhank.2418
    @shrivardhank.2418 2 роки тому

    That graphical approach gives a good sense of what that inequality means, This can also be proved by weighted AM GM Inequality too, Thank you sir

  • @Szynkaa
    @Szynkaa 2 роки тому

    very interesting and nice explained :)

  • @annaluiza3592
    @annaluiza3592 3 роки тому

    Thanks for sharing this! It helped a lot!

  • @yeast4529
    @yeast4529 6 місяців тому

    Really nice, this way is very easy

  • @ailemac9421
    @ailemac9421 3 роки тому

    Thank you for the explanation 🤩🤩🤩🤩

  • @yashvardhan6521
    @yashvardhan6521 3 роки тому +1

    Well One question I wanted to ask
    Do we study these in higher mathematics as well or are these restricted to olympiads.
    Because whenever I searched for Holders or Minkowski or such inequalities for olympiad purposes, I used to see terms like Metric spaces and stuff which I don't know about.
    Could u illuminate plz.

    • @ProfOmarMath
      @ProfOmarMath  3 роки тому +2

      Yes these inequalities are very much related to metric spaces, it’s cool stuff!

  • @AxiomTutor
    @AxiomTutor 2 роки тому +1

    Desus got fuck smart.

  • @yashvardhan6521
    @yashvardhan6521 3 роки тому +1

    Well this can also be derived directly from weighted am gm with weights 1/p and 1/q which in turn comes from Jensen's.
    Nice alternate proof prof.

  • @terryendicott2939
    @terryendicott2939 3 роки тому

    Cool

  • @pipilu3055
    @pipilu3055 Рік тому

    cool! a picture proof is 1000 times better than a dry proof using AM GM

  • @mayurjawane9463
    @mayurjawane9463 4 роки тому

    Sir why we take here a^p = b^q,

    • @ProfOmarMath
      @ProfOmarMath  4 роки тому +1

      If I'm understanding correctly, equality occurs when b=f(a) and they gives a^p=b^q

  • @davie-uz1dl
    @davie-uz1dl 4 роки тому

    hello there, thanks for ur video!
    why would you choose the function x^(p-1)? why not x^(p-2) or x^(p-3) or just a random function, containing the exponent p, somehow.
    Greetings!

    • @ProfOmarMath
      @ProfOmarMath  4 роки тому +1

      Great question. I think the intuition is that when you integrate x^{p-1} you get a constant times x^p and the inequality in question is related to p-th powers of numbers.

    • @davie-uz1dl
      @davie-uz1dl 4 роки тому

      @@ProfOmarMath Thanks a lot Sir, that helped!

    • @mathmaticalproblemandsolution
      @mathmaticalproblemandsolution 2 роки тому

      i think if you choose p=1.00001 then x^p-2 or x^p-3 will not be increasing function

    • @violetasuklevska9074
      @violetasuklevska9074 Рік тому

      You want the solution to the integral to be x^p/p, so you take its derivative.

  • @ProfOmarMath
    @ProfOmarMath  4 роки тому +4

    p and q should be > 1 rather than just positive

    • @charanthiru5761
      @charanthiru5761 4 роки тому +2

      Yeah Sir it must be.
      And Sir your videos are too good! You make maths more attractive to me. And this Young's inequality proof was super cool!

    • @ProfOmarMath
      @ProfOmarMath  4 роки тому +3

      @@charanthiru5761 Thanks! What are your favorite topics in mathematics?

    • @charanthiru5761
      @charanthiru5761 4 роки тому +2

      @@ProfOmarMath Never thought that u would reply to me. Blessing.
      Calculus, Trig, Vector Algebra Sir.

    • @Oliver-cn5xx
      @Oliver-cn5xx 4 роки тому

      Hej awesome, I knew something! Thanks for confirming in the comments. I love your stuff btw.

    • @ProfOmarMath
      @ProfOmarMath  4 роки тому

      @@Oliver-cn5xx Thanks!

  • @imenlakrout6982
    @imenlakrout6982 3 роки тому

    Why a , b 》0

    • @ProfOmarMath
      @ProfOmarMath  3 роки тому

      Gets funny with negatives if p and q are odd