Using Ordinal Encoder for encoding input categorical features | Machine Learning

Поділитися
Вставка
  • Опубліковано 11 січ 2025

КОМЕНТАРІ • 35

  • @marioluigi7384
    @marioluigi7384 4 роки тому +4

    Thank you Rachit! Your videos have helped me to clear the confusion between the different encoders in sci-kit learn and when to use each one.

    • @rachittoshniwal
      @rachittoshniwal  4 роки тому

      You're welcome, Pruthvi! I'm glad I could help! :)

  • @aramisfarias5316
    @aramisfarias5316 3 роки тому +2

    Thank you! This video really helped. It's the first time I use Ordinalencoder.
    Regards from Brazil.

  • @christopherreif3624
    @christopherreif3624 2 роки тому

    Thank you for this video, I've been trying to figure out how to order ordinal encoder!

  • @chiragsharma9430
    @chiragsharma9430 3 роки тому

    Thanks Rachit for creating the series. Most of the institutes don't really explain this stuff properly and they don't even care about the problem of data leakage.
    They always begin first fill the missing values on the entire dataset, do outlier detection etc. And then jump onto the train_test_split().
    It's really good that you are emphasizing on the data leakage problem.
    Please create videos on machine learning algorithms with hyperparameter tuning also.

    • @rachittoshniwal
      @rachittoshniwal  3 роки тому +1

      Thanks! I do have one on hyperparameter tuning : ua-cam.com/video/KzIQ3G_TEFg/v-deo.html

    • @chiragsharma9430
      @chiragsharma9430 3 роки тому

      @@rachittoshniwal Thanks for the video on hyperparameter tuning.

  • @dikshitlenka
    @dikshitlenka 3 роки тому

    Nicely explained.. Thanks!!

  • @hugosalomon2558
    @hugosalomon2558 3 роки тому +1

    Thanks ! Exactly what I was looking for.

  • @Vilaiyattu-510
    @Vilaiyattu-510 4 роки тому +2

    really useful compared to other keep it up

  • @pankajh3107
    @pankajh3107 4 роки тому

    Nicely explained handling Ordinal Variable...thanks

  • @owusubright1046
    @owusubright1046 4 роки тому

    Thank you sir for such an amazing content. First of all i understand when to use ordinal and label encoder but my didn't understand how you implemented the ordinal encoder. can you please enlighten me more on it sir.

  • @ajaykushwaha4233
    @ajaykushwaha4233 3 роки тому

    Hi Rachit thank you for explanation. Is it possible to apply fit_transform for outlier removal as well. How can we remove outlier from Xtrain and xtest ?

  • @anthonymelendez1127
    @anthonymelendez1127 3 роки тому

    Hey Rachit, thanks for this tutorial. Suppose I had a whole dataset of ordinal likert scale data and I tried to predict a ordinal response variable, what type of model would I use?

    • @rachittoshniwal
      @rachittoshniwal  3 роки тому

      Hi Anthony,
      So if the data is on a likert scale I assume there would be some natural order to it, so you could try and enumerate them instead of creating dummy variables. As for the ordinal target, see this paper: www.scinapse.io/papers/2103459159
      here they are predicting wine quality from 1-10. So they've considered a regression problem initially and then rounded off the float to an integer based on some criteria. The paper mentions this criteria.
      Hope it helps!

  • @swatiaparna3829
    @swatiaparna3829 3 роки тому

    Amazing video Rachit. Is it possible to apply label encoder and ordinal in the same dataset for different columns? If yes could you please suggest how?
    Thanks in advance

    • @rachittoshniwal
      @rachittoshniwal  3 роки тому

      Thanks Swati! You can use a column transformer to apply different transformations to different columns

  • @zouhir2010
    @zouhir2010 3 роки тому

    great explanation thank's

  • @vishnukv6537
    @vishnukv6537 3 роки тому

    How to reflect the new encoded values inside the dataframe?

  • @vanshajgoel8783
    @vanshajgoel8783 3 роки тому

    Thank you bro!!!

  • @riyas8683
    @riyas8683 3 роки тому

    Thank you for the amazing content! Can you also please show how to rename the resulting encoded column?

    • @rachittoshniwal
      @rachittoshniwal  3 роки тому +1

      Thank you Riya! Well, if you're doing the encoding on a standalone basis (without a pipeline i.e.) then you'd have to make a note of the columns beforehand in a variable (say, cols) and then do a pd.DataFrame(output, columns = cols)

  • @nehasingh7975
    @nehasingh7975 3 роки тому

    Why we should not do data preprocessing on the entire dataset at once?

    • @rachittoshniwal
      @rachittoshniwal  3 роки тому

      It would lead to "data leakage" where you already have a glimpse of the test data before checking your model on it. We need to keep the test data unseen until we do the predictions. (Self promotion incoming - I explain it here : ua-cam.com/video/Tui5ajW3JF8/v-deo.html ) :p

  • @kapoue57
    @kapoue57 3 роки тому

    Thanks mate!

  • @atiaspire
    @atiaspire 4 роки тому +1

    nice topics

  • @shashanksundi5669
    @shashanksundi5669 3 роки тому

    Thank you :) !!

  • @danielniels22
    @danielniels22 3 роки тому

    bingung gua anj