One Hot Encoder with Python Machine Learning (Scikit-Learn)

Поділитися
Вставка
  • Опубліковано 23 гру 2024

КОМЕНТАРІ • 57

  • @aniketshrikondawar6598
    @aniketshrikondawar6598 3 місяці тому +1

    Please make sure all cells are visible on screen. Sometimes not able to view end of cell content.

  • @ahsanjamil1495
    @ahsanjamil1495 4 місяці тому +1

    in case if we have multiple variables which are non-ordinal, do we use the onehotencoder on all the variables at once by adding them to the list initially or do we do this one by one?

  • @omer4826
    @omer4826 8 місяців тому

    thanks a lot dude! really helped me grasp the basics!

  • @shivi_was_never_here
    @shivi_was_never_here 7 місяців тому

    Thanks a lot Ryan! This has to be one of the best videos out here dealing with encoders. If only others were this easy!
    Thanks again.

    • @shivi_was_never_here
      @shivi_was_never_here 7 місяців тому

      Also, do I have to fit and transform all my sets? Or only the training set? Do I have to fit the test set? Thanks again!

  • @RyanAndMattDataScience
    @RyanAndMattDataScience  4 місяці тому

    Hey guys I hope you enjoyed the video! If you did please subscribe to the channel!
    If you want to watch a full course on Machine Learning check out Datacamp: datacamp.pxf.io/XYD7Qg
    Want to solve Python data interview questions: stratascratch.com/?via=ryan
    I'm also open to freelance data projects. Hit me up at ryannolandata@gmail.com
    *Both Datacamp and Stratascratch are affiliate links.

  • @ShirHaShiurim-mq1zj
    @ShirHaShiurim-mq1zj Місяць тому

    This video was so helpful, thank you. Think you could also make one on frequency encoding and the other types of encoding?

  • @AtanasVekiev
    @AtanasVekiev 2 місяці тому

    Very good tutorial, but what about the "dummy variable" trap? I think you should drop one of these new variables.

  • @A-K-I-R-A-
    @A-K-I-R-A- Рік тому +1

    Nice tutorial, clean and direct!

  • @alonzoslim
    @alonzoslim Рік тому

    This is a great video. Explained in a manner that a newbie like myself can understand. Thank you.
    A question: What if the dataset contains multiple categorical variables (as well as numerical), and they are all required as input to make a prediction. How can one go about it?

    • @RyanAndMattDataScience
      @RyanAndMattDataScience  Рік тому +1

      Thank you! There are multiple ways to one hot encode the categorical variables. Check out my titanic video and or the house predictions. I show a few different processes

  • @Only_Reality_True
    @Only_Reality_True 2 місяці тому

    Hii...I have an error like OneHotEncoder._init_() got an unexpected keyword argument 'sparse'.... Also I already imported library which are necessary... please tell me what should I do😢

  • @charlesmay1610
    @charlesmay1610 2 місяці тому

    Perfect explanation! very helpful :)

  • @juanDoAs
    @juanDoAs Рік тому

    Trying your code I get this error: 'AttributeError: 'OneHotEncoder' object has no attribute 'set_output''. Any idea why this is?

  • @Futureyouth-be1bo
    @Futureyouth-be1bo 5 місяців тому

    dude how about if i have two different datasets while theier categorical values are different how can i do one hot encoding
    the first one has 9349 rows × 17 columns
    and the second one has 365 rows × 17 columns while if i make one hot encoding they will be produced
    for the first one they become 611 columns of hot encoding
    and the second one become 20 columns please help me how can i do this note the two datasets have Origin and destintion city names

  • @eyadal-naimi3782
    @eyadal-naimi3782 11 місяців тому

    protect this man

  • @RyanAndMattDataScience
    @RyanAndMattDataScience  Рік тому +5

    Have a need for a data project? Email me or fill out the form on my website.
    Looking for the code? Check out the article: Looking for the code? Check out the article: ryannolandata.com/one-hot-encoder/

  • @message59
    @message59 11 місяців тому

    Thanks a lot was a great help :) hope you have a good day

  • @yasminwael-pl5fv
    @yasminwael-pl5fv 3 місяці тому

    thank you very much 💕

  • @shadrinan90
    @shadrinan90 10 місяців тому

    Great explanation, thanks

  • @kablamo9999
    @kablamo9999 6 місяців тому

    Thank you!

  • @La_mia-r5z
    @La_mia-r5z 7 місяців тому

    Thank you ❤

  • @ttdddaa
    @ttdddaa 4 місяці тому

    thanks dude

  • @onurdatascience
    @onurdatascience Рік тому

    Great video!

  • @ginaross295
    @ginaross295 Рік тому

    Thank you so much for this video !!!!

  • @neerajchauhan1371
    @neerajchauhan1371 5 місяців тому

    Thanks buudy

  • @ayushparwal2210
    @ayushparwal2210 11 місяців тому +1

    thanks buddy it helps me !:)

  • @swativarsha68
    @swativarsha68 Рік тому

    lerant a lot! thanks!!

  • @PhilTag-ml6wd
    @PhilTag-ml6wd 8 місяців тому

    Stopped a bit short. Need to go through how to use the encoder for predicting and not just setting up for training. eg. enc.transform() on the features you need to run the prediction on . Has been a bit of a pain with the datatype.

    • @Aldotronix
      @Aldotronix 7 місяців тому

      I don’t know if i understand your comment but you can make a make_pipeline to build all preprocessing steps: use a ColumnTransformer to select the columns to one hot encode and use the one hot encoder. You can cross validate, fit and predict using the pipeline instead of building a model again.

    • @RyanAndMattDataScience
      @RyanAndMattDataScience  6 місяців тому

      I have some projects that do. I may remake this video in the furture

  • @peidomolhado7016
    @peidomolhado7016 3 місяці тому +1

    skibi learn 😝😝😝

  • @leodexter191
    @leodexter191 6 місяців тому

    please go lil slow hard to understand

  • @usamaspeakscricket
    @usamaspeakscricket 2 місяці тому

    Thanks buddy