matrix norm and condition number

Поділитися
Вставка
  • Опубліковано 26 гру 2024

КОМЕНТАРІ • 24

  • @Erniebob17
    @Erniebob17 11 років тому +2

    Cheers Jeffrey. You saved me from some quite abstract reading - this went much more painless.

  • @EricInvesting
    @EricInvesting 10 років тому +13

    In minute 15:00 you should have written the product as you said and not the quotient between the norm of A and the norm of its inverse. In fact usually one takes this as a definition with a general norm and then one can find other characterizations of the condition number like the one you said between the quotient of the biggest and the smallest eigenvalue

  • @iyalovecky
    @iyalovecky 10 років тому

    Last part about how to find norm for a non-symmetric matrix is precious!

  • @skiitd
    @skiitd 9 років тому +11

    at about 6:00, should be ||b||=|lambda_i| ||x||

  • @ruralmetropolitan
    @ruralmetropolitan 11 років тому

    That made my day. Absolutely fantastic explanation!

  • @kyang1305
    @kyang1305 5 років тому

    Wonderful explanation! Thank you very much!

  • @DanielEkeHead
    @DanielEkeHead 9 років тому

    Awesome videos, helps me a lot, thank you!

  • @Afzalive
    @Afzalive 11 років тому +3

    At 6.25. isn't ||b|| = |eigenvalue| ||x|| instead of the other way?

  • @motttherotter3435
    @motttherotter3435 11 років тому

    Fantastic explanation! Not the usual beating around the bush..

  • @ytjoemoore94
    @ytjoemoore94 3 роки тому

    At minute 6:00 you wrote the wrong equality but still wrote the right one underneath it

  • @zoezhang7410
    @zoezhang7410 8 років тому

    best explanation ever!
    thank you

  • @wishkah256
    @wishkah256 11 років тому +1

    One can tell you know this inside out, amazing didactics, too!!

  • @kojo.
    @kojo. 6 років тому

    how did you calculate for x and y so easy at 2:00

  • @jolelamparelli3325
    @jolelamparelli3325 9 років тому

    Thank you!!! Such a good explanation

  • @vijaykumartyagi3505
    @vijaykumartyagi3505 7 років тому

    can we apply norm in calculation of conditional no of a real matrix..

  • @andydavidson6028
    @andydavidson6028 2 роки тому

    great video. I have an unusually problem I can actually choose A, any guidance how I find the best possible A? assume A is real valued. What if A contains counts, that is to say integers >= 0

  • @monicasbaffoni
    @monicasbaffoni 11 років тому +1

    Nice video but you wrote one formula wrong. At 15:09 cond(A)=norm(A)*norm(Ainv)

  • @terryzhang1759
    @terryzhang1759 9 років тому

    finally I get to know what is well-conditions

  • @AceHardy
    @AceHardy 5 років тому

    Simulation 💻📱

  • @unrealmush
    @unrealmush 11 років тому

    why is it bad if epsilon and delta are scaled? does something matter besides their proportionality?
    ** What is lambda?????

    • @elfos3790
      @elfos3790 10 років тому

      ***** Lambda min and max are the minimum and maximum eigenvalues in absolute value, indeed.
      This can be extended to non-symmetric matrices by looking at the singular value instead of the eigenvalues, in the case in which the matrix norm we're considering is induced by the Euclidian norm (note that the condition number depends on which matrix norm you choose).
      unreal epsilon and lambda are just errors, not the vectors+errors. If the error is small but the original vectors are even smaller, then it's bad. If the error is big but the original vectors are bigger than the error, then it does not matter too much. That's why the scaling matters; it's not the same thing to have an error of 1 when the result is 0.0001 compared to when the result is 10000.
      +Jeffrey Adams you got the condition number wrong at 15:00

  • @wishkah256
    @wishkah256 11 років тому

    Thanks a lot!!!