Olympiad Algebra

Поділитися
Вставка
  • Опубліковано 21 лис 2024

КОМЕНТАРІ • 111

  • @lucmacot5496
    @lucmacot5496 11 місяців тому +13

    Treat a known value as an unknown to be able to use algebraic identities: Bravo! Beautiful!

  • @mathboy8188
    @mathboy8188 11 місяців тому +54

    Your presentation is damn-near perfect:
    slow clear enunciation,
    straight legible & well-spaced writing,
    good eye contact,
    not standing too long in front of your writing (barely at all in fact),
    explaining your thought process and then the math steps to work them out,
    and most of all, enthusiasm for the material!
    People who've never done it probably don't appreciate just how hard this is to do well. When I was teaching math, my mind was going a mile a minute, but almost none of it was math (which was the trivial part). It was about monitoring the issues above and more. Am I making eye contact with everyone? How's my time? Is my voice loud enough for those in the back, but not too loud? Is this explanation too high or too low? Have I offered enough high and low insights for the outliers who find the topic too easy/hard? Is an interesting tangential observation worth the time and deviation? And so on.
    If you aren't a teacher, then you _must_ become one in some capacity, as it is absolutely your calling.
    And if you are a teacher as I assume, then your students are very lucky.

  • @TimothyLoftin-l1i
    @TimothyLoftin-l1i 7 місяців тому +5

    As a follower of physics, I am/was good at math and enjoyed it a lot, but the skills/tricks I learned were directed at solving problems found in the physical world. The most interesting problems you present are not from that realm and are all fresh to me. So many new tricks to learn!

  • @Hrishi02005
    @Hrishi02005 11 місяців тому +6

    Simply when we put X=√3
    Then the equation x³-(3+√3)x+3=0 satisfied.
    So x-√3 is a factor of the above eqn
    We get x²+√3x-√3 from fx=qx.gx
    So
    X=√3, [{-√3±(√3+4√3)}/2].

  • @rainerzufall42
    @rainerzufall42 11 місяців тому +4

    One should always check claims that were made... So I put the equation into Wolfram Alpha and got:
    >> x = sqrt(3)
    >> x = 1/2 (-sqrt(3) - sqrt(3 + 4 sqrt(3)))
    >> x = 1/2 (sqrt(3 + 4 sqrt(3)) - sqrt(3))

  • @andrewjames6676
    @andrewjames6676 11 місяців тому +4

    You remind me of the best teacher I ever had (Physics, England, 1957).

  • @arsessahra-yb9zb
    @arsessahra-yb9zb 11 місяців тому +1

    با درود،یک خلاقیت در حل این مسیله به خرج دادی،بسیار سپاسگزارم

  • @tcmxiyw
    @tcmxiyw Місяць тому

    As always, I love your presentation-clarity, enthusiasm, and great blackboard technique. The cubic formula leads solutions. It can also lead to nested radicals which can be tricky to simplify. The form of this equation suggests trying x=sqrt(3) as a solution.

  • @luisclementeortegasegovia8603
    @luisclementeortegasegovia8603 11 місяців тому +8

    Professor, you have the great ability to manage the algebra beautifully, and those substitutions are a master piece!

  • @vietdungle1237
    @vietdungle1237 11 місяців тому +13

    2:29 from there it's clear to see that x-sqrt(3) is a common factor. By the way, your solution is very interesting but complicated for this particular problem. That method usually is used for higher degree of x (like x^5) because cubic equations literally have a formula or usually in exam have an easy to find common factor

    • @yessinegebssi162
      @yessinegebssi162 7 місяців тому +2

      yes he could have used the Horner's method, since sqrt of 3 is a clear solution. however, his methode is way too good , i like it .

  • @apone2820
    @apone2820 11 місяців тому +5

    Your channel is such a hidden jewel man, I love your videos.

  • @adammohamed5256
    @adammohamed5256 11 місяців тому +2

    I dunno why your videos don't pop up here for more than 3 months !!
    Gr8 work! Keep it up bro.

  • @francaisdeuxbaguetteiii7316
    @francaisdeuxbaguetteiii7316 11 місяців тому +58

    Depressed cubic formula 😂

    • @abraham5276
      @abraham5276 11 місяців тому +2

      🤓

    • @hvok99
      @hvok99 9 місяців тому +1

      My first thought as well 😂

  • @Rai_Te
    @Rai_Te 9 місяців тому

    Very elegant solution. ... I also tried it, and saw that sqrt(3) is a solution from the beginning. So I just did a polynominal division (orignal formula / (x - sqrt(3)) which gave me the quadratic remainder.
    However, a solution where you find one answer 'by inspection' (which is just a nice way to say 'i guessed until I found something') is always inferior to a solution by formula, so kudos to you.

  • @rutamupadhye1828
    @rutamupadhye1828 11 місяців тому +1

    teacher, your channel is great

  • @creature_from_Nukualofa
    @creature_from_Nukualofa 11 місяців тому +1

    this can be solved as a quadratic where the "variable" is sqrt(3) - i .s. (1-x) (sqrt(3)^2) + x sqrt(3) + x^3 - then a= (1-x), b= x and c= x^3 - plugging this to the quadratic formula one gets the first solution fast without guessing - then this can be reduced to a normal quadratic eq. given one solution is known.
    I really like you channel and your way of explaining !!

  • @atanubiswas.5098
    @atanubiswas.5098 11 місяців тому +2

    The question was so easy to me, but it was your presentation style which made me a fan of yours❤ Thank you sir 🥰

  • @ben_adel3437
    @ben_adel3437 11 місяців тому +1

    Thats so cool idk how but when i tried to solve it i just say that x=sqrt(3) and then just divided by x-sqrt(3) and found the other ones but this is really helpful because in most cases i can't just see it

  • @sonaraghavan9454
    @sonaraghavan9454 11 місяців тому +1

    Awesome presentation.

    • @sonaraghavan9454
      @sonaraghavan9454 11 місяців тому +1

      When I first saw your problem, I applied factor theorem and figured out that cubic function becomes zero at f(√3). So for sure one root is √3. Then apply synthetic division and find the remaining two factors.

  • @albajasadur2694
    @albajasadur2694 5 місяців тому +4

    have you checked the answers given by the computer ? You got 3 real roots, while the computer solutions seem to be 3 complex roots.

  • @88kgs
    @88kgs 11 місяців тому +1

    Very nice video
    The real name of quadratic formula is.....Shreedha Ahcharya formula .
    Regards 🙏

  • @Blade.5786
    @Blade.5786 11 місяців тому +27

    By observation,
    x = √3
    It's easy to find the other solutions from there.

    • @dandeleanu3648
      @dandeleanu3648 11 місяців тому +8

      At olympiad there is't solution by observation!

    • @koenth2359
      @koenth2359 11 місяців тому +16

      ​​@@dandeleanu3648Why not? Observation is legitimate, as long as you prove it's correct.

    • @ppbuttocks2015
      @ppbuttocks2015 11 місяців тому

      so just say by observation as the proof then as the top comment says@@koenth2359

    • @isabelshurmanfeitoza6898
      @isabelshurmanfeitoza6898 11 місяців тому

      ​@@dandeleanu3648 se você faz os cálculos não está errado não

    • @mathboy8188
      @mathboy8188 11 місяців тому +3

      That's the ideal way to solve it. The question is how to proceed if you don't see that.

  • @lukaskamin755
    @lukaskamin755 11 місяців тому +1

    brilliant solution, I just wanted to mention that when you make that inference when the product equals zero, then one of the multipliers equals zero, while THE OTHER EXISTS (or defined). That doesn't make issues in this particular problem, but it might in other cases like irrational equation of type A(x)*sqrt(B(x))=0 (there might be more than one irrational factor)

  • @nothingbutmathproofs7150
    @nothingbutmathproofs7150 11 місяців тому +4

    I think that it would have been better to factor out sqrt(3) from -sqrt(3)+3. Real nice job as usual.

  • @jamesharmon4994
    @jamesharmon4994 11 місяців тому +1

    What an elegant solution!

  • @nadonadia2521
    @nadonadia2521 2 місяці тому

    Replace x = √3 in the polynom and calculate ,P(√3)=0 , x = √3 is a root of the polynom divide (Ecludian division) the polynom per (x-√3) and obtain a second degree polynom
    resolve the second degree polynom =0.

  • @mr.musica5787
    @mr.musica5787 3 місяці тому

    It was really useful. But my take would be assuming the three possible roots and going forth with their sum, product and sum of products to find the value of x.

  • @juliovasquezdiaz2432
    @juliovasquezdiaz2432 11 місяців тому +1

    Gracias. Me gustó el video
    Saludos

  • @avalagum7957
    @avalagum7957 11 місяців тому +1

    The most difficult part is to know that x = sqrt(3) is a solution. Then the rest is easy: x^3 - (3+sqrt(3))x + 3 = (x - sqrt(3)) * a quadratic equation

  • @janimed9266
    @janimed9266 11 місяців тому +1

    Very good

  • @aalekhjain2682
    @aalekhjain2682 3 місяці тому

    I havent watched the video yet just clicked on it and here is my solution:
    By hit and trial, x=√3 is a solution.
    So x³-(√3+3)x+3= x³-√3x -3x +3= 0
    => (Adding and subtracting √3x² and reareanging the equation), x³-√3x²+√3x²-3x-√3x+3=0
    =>( x²+√3x-√3)(x-√3)=0
    From here, x=√3 is a solution.
    If we see quadratic, D= b²-4ac= 3+4√3
    Hence x= (-√3±√(3+4√3))/2
    Hence we get three solutions of the equation:
    x=√3, (-√3±√(3+4√3))/2

  • @allegrobas
    @allegrobas 11 місяців тому +1

    Wow !!! Good work !!!!

  • @dalesmart9881
    @dalesmart9881 10 місяців тому +5

    Hay I like your videos, but I must say that the when I first saw the problem, it posed no difficulty because I was able to figure out what to do within one minute (using a different approach). I used factor theorem to determine f(root x) =0 and conclude that (x - root x) is a factor. This meant that the other factor will be quadratic, so I used coefficient comparison to determine the quadratic factor then solve using the quadratic equation. Hence all the solutions were determined.

  • @lbwmessenger-solascriptura5698
    @lbwmessenger-solascriptura5698 11 місяців тому +1

    i think the question was easy great fan

  • @NadiehFan
    @NadiehFan 10 місяців тому +2

    Don't know what's wrong with your WolframAlpha. If I enter your equation like this:
    x^3 - (3 + sqrt(3))x + 3 = 0
    I get exactly the answers you get, not those intractable expressions you show in the video. Also, I already saw this equation earlier on other channels like this one:
    ua-cam.com/video/YnZzpYSIiUU/v-deo.html
    Of course, once you hit upon the idea to write 3 as (√3)² and rewrite the equation as
    x³ − (√3)²x − √3·x + (√3)² = 0
    it is easy to see that we can do factoring by grouping to get
    x(x² − (√3)²) − √3·(x − √3) = 0
    and then we see that we can take out a factor (x − √3) since x² − (√3)² = (x − √3)(x + √3). To make this more transparent you can of course first replace √3 with a variable y to get
    x³ − y²x − yx + y² = 0
    and then do factoring by grouping to get
    x(x² − y²) − y(x − y) = 0
    where we can take out a factor (x − y) which is what you do in the video. A slightly different approach consists in rewriting
    x³ − y²x − yx + y² = 0
    as
    (1 − x)y² − xy + x³ = 0
    which we can consider as a quadratic equation ay² + by + c = 0 with a = 1 − x, b = −x, c = x³. The discriminant of this quadratic in y is D = b² − 4ac = (−x)² − 4(1 − x)x³ = x² − 4x³ + 4x⁴ = (2x² − x)² and using the quadratic formula y = (−b ± √D)/2a we therefore get
    y = (x − (2x² − x))/(2(1 − x)) ⋁ y = (x + (2x² − x))/(2(1 − x))
    which gives
    y = x ⋁ y = x²/(1 − x)
    and replacing y with √3 again this gives
    x = √3 ⋁ x²/(1 − x) = √3
    Of course, x²/(1 − x) = √3 gives x² + √3·x − √3 = 0 which is exactly the quadratic we get by factoring.

  • @wes9627
    @wes9627 7 місяців тому +1

    We know a cubic has at least one real root, and there is more than one way to skin a cat. A real value of x is around 2 so try fixed-point iteration, starting with x=2. x←∛[(3+√3)x-3] returns x=1.73205..., which is close to x=√3, the exact root. Divide the given equation by (x-√3): x^2+√3x-√3=0 yields x=[-√3±√(3+4√3)]/2

  • @BartBuzz
    @BartBuzz 10 місяців тому +1

    Very clever solution. The first solution you showed was very non-Olympiad!

  • @JeffreyLWhitledge
    @JeffreyLWhitledge 11 місяців тому +3

    The HP Prime gets the same answer you did. The TI-nspire CX II CAS decided to give the decimal approximations. The Casio CG-500 gives a crazy answer that looks like the Wolfram Alpha version. Prime Newtons and HP Prime win this round.

  • @moonwatcher2001
    @moonwatcher2001 11 місяців тому +1

    Awesome, mate!

  • @falsebanned2899
    @falsebanned2899 8 днів тому

    what i did that gives the sane awbser was use the quadratic formula at the very start but rather than use x and x^2 i used root 3 and 3 so the coefficient of the 3s would be a the coefficient of root3 is b and the rest is c , gives the right awnser

  • @reamartin6458
    @reamartin6458 11 місяців тому +1

    Top notch 👍

  • @allmight7073
    @allmight7073 Місяць тому

    The method is so smart that I couldn't sleep thinking of how smart was that method

  • @kingtown9580
    @kingtown9580 11 місяців тому +1

    Can you make video on the theory and make a playlist so people can learn new concepts of math which they don't know

  • @Ether.21
    @Ether.21 11 місяців тому +1

    amazing solution

  • @kangsungho1752
    @kangsungho1752 11 місяців тому +1

    Awesome method!

  • @er63438
    @er63438 Місяць тому

    For me it was easier to "see" that sqrt(3) was a root, then getting the 2nd degree polynomial, than the substitution+difference_of_squares

  • @ayan.rodrigo
    @ayan.rodrigo 11 місяців тому +1

    Fucking FANTASTIC, my friend

  • @helu7777
    @helu7777 Місяць тому

    Excellent!

  • @jacobgoldman5780
    @jacobgoldman5780 11 місяців тому +5

    Unfortunate that sqrt(3+4sqrt(3)) doesnt seem to simplify nicely unless I miss something obvious.

    • @CUSELİSFAN
      @CUSELİSFAN 11 місяців тому +1

      no it doesnt, unfortunately.

    • @aalekhjain2682
      @aalekhjain2682 3 місяці тому

      I always see to make it perfect square inside the root so that it comes out, but unfortunately here it doesn't work

  • @МартинАндреев-ы4л
    @МартинАндреев-ы4л 11 місяців тому +5

    I plugged that in Wolfram Alpha and I get the correct answers. Make sure you've written the equation properly and everything should be fine.

    • @salihelis
      @salihelis 5 місяців тому

      hello
      I wonder how it is possible with wolfram alfa it is a machine

  • @evbdevy352
    @evbdevy352 11 місяців тому +1

    You could be a great actor.

    • @PrimeNewtons
      @PrimeNewtons  11 місяців тому +1

      I am! The board is my stage.

    • @evbdevy352
      @evbdevy352 11 місяців тому

      @@PrimeNewtons Congratulations.I wish you success.Thanks a lot.

  • @VittorioBalbi1962
    @VittorioBalbi1962 11 місяців тому +1

    Brilliant thinking
    Watch out y squared is 3 not radical 3 so the solution might be even simpler

  • @weo9473
    @weo9473 11 місяців тому +3

    I like your smile

  • @voice4voicelessKrzysiek
    @voice4voicelessKrzysiek 11 місяців тому +1

    Nice! After distributing (3+sqrt(3))x into 3x + sqrt(3)x I got the same answer without substitution since I started seeing a way out of the problem, not without earlier reassurance from you that there is a way out, though 😁

  • @thekingtheking1431
    @thekingtheking1431 6 місяців тому

    Ty for all these videos !!! Love them 😍

  • @user_math2023
    @user_math2023 11 місяців тому +1

    Super ❤❤❤❤❤❤

  • @AzharLatif-d4z
    @AzharLatif-d4z 11 місяців тому +1

    Excellent, you live on the edges of the undiscovered Mathematics . This is an enviable attribute, checked at x^1/3.This monstrosity produced by Fulkram must be rejected as a bad joke!

  • @butterflyeatsgrapes
    @butterflyeatsgrapes 7 місяців тому +1

    🦋I SMILED THROUGHOUT THE WHOLE VIDEOOO THANK U SO MUCHHHHHHH🦋

  • @cluedohere
    @cluedohere 11 місяців тому +1

    oh, i am surprised that the wolfram alpha got that answer. it's not because the answer is complicate but wrong(see the approximate value they gave).

  • @basqye9
    @basqye9 11 місяців тому +1

    excellent!

  • @kangsungho1752
    @kangsungho1752 11 місяців тому +1

    What an Idea!

  • @malabikasaha2452
    @malabikasaha2452 4 місяці тому

    I treated x as constant 3^1/2 as variable (p say) and solved for p. Things fell in place easily.

  • @fcostarocha
    @fcostarocha Місяць тому

    O did the same, but i did not use y. Just presume It was a Square, and made The math with Square 3 anyway. Your solution is Just more beautiful to watch. 😂

  • @Bertin-q3y
    @Bertin-q3y 11 місяців тому +1

    Une solution unique x comprise entre -1 et 0.

  • @Bertin-q3y
    @Bertin-q3y 11 місяців тому +1

    X=3^0,5 et on divise pour les deux restes.

  • @shaswatadutta4451
    @shaswatadutta4451 11 місяців тому +1

    This is a really easy problem.

  • @davidbrisbane7206
    @davidbrisbane7206 Місяць тому

    Actually, by observation x = √3 looks like a solution and indeed it is 😆.
    So, divide the cubic by x - √3 to find the quadratic formular.

  • @lukaskamin755
    @lukaskamin755 8 місяців тому

    Why you say the first factoring you mentioned doesn't work? I tried and it worked perfectly: x(x²-3)-√3(x-√3)=0, than ( x-√3)(x²+x√3-√3)=0. So x1=√3, x2,3=½(-√3±√(3+4√3))
    IMHO it's too easy for an Olympiad 😊

  • @v8torque932
    @v8torque932 11 місяців тому +1

    I don’t watch for the math I watch to see a black guy stare at me with no audio

  • @cliffordabrahamonyedikachi8175
    @cliffordabrahamonyedikachi8175 10 місяців тому

    Simply the quadratic formular were left the same way as the solution.

  • @vaibhavsrivastva1253
    @vaibhavsrivastva1253 11 місяців тому +1

    I got it right.

  • @bhchoi8357
    @bhchoi8357 11 місяців тому +1

    Love you

  • @BozskaCastica
    @BozskaCastica 11 місяців тому +1

    Yeah did it before I watched the video. But I didn't do the substitution.

  • @dante224real1
    @dante224real1 11 місяців тому +1

    D=eSnu+5 /(0-nuR)^CHin
    find intergers that fit D=N+CHi=69

  • @loggerkey6905
    @loggerkey6905 11 місяців тому +1

    6:22 😂😂

  • @alexanderkonieczka2592
    @alexanderkonieczka2592 11 місяців тому +1

    when i put it in wolfram i got your same answer.... maybe a typo on entry or they fixed it?

  • @egondanemmanueltchicaya1089
    @egondanemmanueltchicaya1089 11 місяців тому +1

    😂😂😂😂 impressive

  • @Mohamed2023Laayoune
    @Mohamed2023Laayoune 7 місяців тому

    ,Plz what is the name of the method that you use to find the solution 2 and 3, who know it , he can answer

  • @user-vf3vh1yk5q
    @user-vf3vh1yk5q 11 місяців тому +1

    nice night

  • @subhashchandra-yo4rb
    @subhashchandra-yo4rb 6 місяців тому

    You could do it without substituting √ 3 as y😊

  • @TomCruz142
    @TomCruz142 11 місяців тому +2

    (x+√3) is a factor...very easy

  • @ricardoguzman5014
    @ricardoguzman5014 5 місяців тому

    x₁ + x₂ + x₃ = 0, interesting solutions.

  • @JamesBond-jp6dp
    @JamesBond-jp6dp 3 місяці тому

    My a level maths teacher exects me to do this in 30 seconds

  • @asthrowgaming6493
    @asthrowgaming6493 2 місяці тому

    x = -√3 , other solution can be fine easily

  • @honestadministrator
    @honestadministrator 7 місяців тому

    ( x - √3) ( x^2 + x √3 + √3) = 0
    x = √ 3 , ( - √3 + √ ( 3/4 - √3))
    - ( √3 + √ ( 3/4 - √3))

  • @Evgeny-2718
    @Evgeny-2718 11 місяців тому +2

    You have some strange Wolfram Alpha! Normal Wolfram Alpha gives a perfectly good short solution! Why are you misleading your subscribers?

    • @rainerzufall42
      @rainerzufall42 11 місяців тому +2

      At least two people out there thinking, that this shouldn't be too complicated for Wolfram Alpha...

    • @rainerzufall42
      @rainerzufall42 11 місяців тому +2

      BTW: What is this video other than guessing the root x = sqrt(3) and finding the other two roots?
      For example: x³-(3+sqrt(3))x+4=0 has two complex roots, that are ugly, although I just wrote 4 instead of 3.
      The real root is: x = -(3 + sqrt(3) + 3^(1/3) (6 - sqrt(2 (9 - 5 sqrt(3))))^(2/3))/(3^(2/3) (6 - sqrt(2 (9 - 5 sqrt(3))))^(1/3))

  • @Bertin-q3y
    @Bertin-q3y 11 місяців тому +1

    Une solution unique x comprise entre -1 et 0.