Multivariable Calculus | Triple integral with spherical coordinates: Example.

Поділитися
Вставка
  • Опубліковано 12 січ 2025

КОМЕНТАРІ • 63

  • @tomatrix7525
    @tomatrix7525 4 роки тому +52

    Every time I see some beautiful multivariable calculus like this I am in awe. These techniques really allow us to do hard stuff so easily...

  • @unclesam6764
    @unclesam6764 3 роки тому +24

    I’m grateful for watching this video with such a lucid explanation. God Bless you sir

  • @gosports8586
    @gosports8586 2 місяці тому +1

    Not really trippin about the integral mistakes, especially since they were done at the top of your head. Just grateful for showing how to set up spherical from rectangular triple integrals! Thanks!

  • @avdrago7170
    @avdrago7170 4 роки тому +46

    Cospi/6 = sqrt3/2, not 1/2

  • @betramlalusha7060
    @betramlalusha7060 3 роки тому +6

    I hope you are doing well and everything in your life is going great! Thank you for this! Wow!

  • @rebucato3142
    @rebucato3142 2 роки тому +19

    Pretty sure the answer is more complicated than that...
    The first integral evaluates to (4^5)/5 = 1024/5, not 2048/5
    the second integral is fine
    The third integral evaluates to (1-sqrt(3)/2), not 1/2, as cos(pi/6) = sqrt(3)/2, not 1/2
    The answer is 512pi/5*(1-sqrt(3)/2)
    Making mistakes on the blackboard is fine as long as they are corrected. However, I am shocked that there are no amendments to this video 2 years after it has been released. This shouldn't happen and I hope Penn can correct this so students would not be confused.

    • @alexalbors7213
      @alexalbors7213 2 роки тому

      Just realized the same thing

    • @scoobydoo3557
      @scoobydoo3557 Рік тому

      Yeah ur right, but I think the process and the sketches are all correct

  • @seanfischler1320
    @seanfischler1320 Рік тому

    Thanks for the video! For some reason I had more success understanding you than my professor.

  • @noahifiv
    @noahifiv 10 місяців тому

    Michael Penn has awesome teaching skills

  • @prathikkannan3324
    @prathikkannan3324 5 місяців тому

    Exceptionally clear! Thanks Michael.

  • @userHamza
    @userHamza 8 місяців тому

    You explain this problem very smoothly

  • @Martin-iw1ll
    @Martin-iw1ll Рік тому +1

    I think it is necessary to check whether the top sphere actually touches the bottom cone, cause if i change the limits for y to from 0 to sqrt(1-y^2), then the answer would be very different and also 0

  • @maxyao4709
    @maxyao4709 2 роки тому +10

    but how can the radius be 4 if y is bounded by [0,2]

    • @savangolakiya1926
      @savangolakiya1926 7 місяців тому +1

      magic

    • @paulnokleberg5188
      @paulnokleberg5188 4 місяці тому

      The spherical portion of the volume is above the xy plane, so the y bounds don't define it. The x bounds initially limit theta to pi, a half circle, and the y bounds further limit theta to pi/2, a quarter circle. When you plot it on desmos, it's easier to see.
      Good question. I can see how that might be confusing at first. A picture is worth a thousand words in calc 3.😊

  • @rookiemvp2008
    @rookiemvp2008 3 роки тому +117

    I hate calc 3.

    • @f.osborn1579
      @f.osborn1579 Рік тому +6

      I took multi variable calc and passed but it made no sense…this video is good though.

    • @davidsteiget4433
      @davidsteiget4433 2 місяці тому +1

      Same and I thought it was supposedly the easiest of the sequence

    • @Endgator
      @Endgator Місяць тому +3

      ​@davidsteiget4433 the equations are easy, the conceptualization is what gets most people.

    • @ksea8971
      @ksea8971 Місяць тому

      @@davidsteiget4433i was lied to as well. My guess is that my professors went too ez for the first two calcs and left me for dead about what was actually going on even tho i got A’s in both…

  • @dalibormaksimovic6399
    @dalibormaksimovic6399 2 роки тому +2

    Hi. I am interested in how one can determine boundaries of integration when there is no a explicit function for z in terms of y, or y in terms of x. For instance, calculate the volume of body bounded by following surfaces: x^2+y^2 = cz, x^4+y^4=a^2(x^2+y^2) and z=0.

  • @Carusot
    @Carusot 4 місяці тому

    Consider the hot air balloon with equation 9x^2 +9y^2 +4z^2 = 100.
    The temperature in the hot air balloon is given by the following function: f(x,y,z) = 18x^2 + 18y^2 + 8z^2 − 20
    • Convert the regular area into appropriate spherical coordinates.
    • Calculate the volume of the balloon.
    • Calculate the average temperature in the Balloon

  • @eulzzzz7682
    @eulzzzz7682 11 місяців тому

    Cosine of π/6 is √3/2 14:25

  • @dilsedhoni9229
    @dilsedhoni9229 2 роки тому +1

    Wonderfully explained

  • @walter9029
    @walter9029 7 місяців тому

    Maybe somebody can help me out: I know you can see the bounds for theta on the board, but is there an algebraic way to derive them from the equations and the xyz bounds ?

  • @jaineshmachhi198
    @jaineshmachhi198 2 роки тому

    Coolest way to end the video saying" Good now it's a good place to stop"😂😂

  • @alidaqa2738
    @alidaqa2738 5 місяців тому

    9:46 should be sqrt 6p^2 sin^2

  • @umalog143
    @umalog143 4 роки тому +2

    It is really nice sir

  • @sarykhalaf
    @sarykhalaf 2 роки тому +1

    how to determine exactly what’s the equation is????

  • @katlegodonald243
    @katlegodonald243 2 місяці тому

    Thanks for this video ,it's appreciated.

  • @maxwellsoko9803
    @maxwellsoko9803 3 роки тому

    You're great Sjr

  • @majidrazavi9467
    @majidrazavi9467 3 роки тому

    Excelant i realy enjoyed god bless you

  • @mateja901
    @mateja901 Рік тому

    Where can I find problems like this?

    • @moondrop3235
      @moondrop3235 9 місяців тому

      If you're taking Calc 3, it's rather common. Probably learn it near the end after learning how to convert bounds to polar and cylindrical coordinates and during triple integration.

  • @thatthila
    @thatthila 3 роки тому

    Thank you :3. It's so niceee!

  • @james-md1cf
    @james-md1cf Рік тому

    Very comprehensive problem

  • @DhruvaDevaraaj
    @DhruvaDevaraaj Рік тому

    You are a legend

  • @f.r.y5857
    @f.r.y5857 7 місяців тому

    good job sir

  • @darcash1738
    @darcash1738 Місяць тому

    yeah i wanted 2^10 power to be 2048 too, but it's not. i mean, that wouldve made that game too easy tho tbh. best ive gotten was 2^13, 8192

  • @Laerteufv
    @Laerteufv 4 роки тому +2

    cos (pi/6)=(3^1/2)/2

  • @ev4_gaming
    @ev4_gaming 3 роки тому

    very helpful

  • @7_str_7
    @7_str_7 11 місяців тому

    Nice 👍

  • @yangfiona8649
    @yangfiona8649 Рік тому

    Thank you!

  • @CalculusIsFun1
    @CalculusIsFun1 Місяць тому

    I got a different answer. I got (256pi/5)(2 - root(3)). Same setup; different answer.

  • @noelani976
    @noelani976 4 роки тому +4

    4^5=1024 and not 2048

  • @pingpongfulldh2308
    @pingpongfulldh2308 4 роки тому +1

    Nice

  • @unconscious5630
    @unconscious5630 10 місяців тому

    4^5 is not 2048 and and cos(pi/6) is not 1/2

  • @lopa797
    @lopa797 4 роки тому

    love you🤗

  • @elf_someone
    @elf_someone Рік тому +1

    لحسة مخ
    يارب فكني من الرياضيات

  • @yBazo82
    @yBazo82 4 роки тому +1

    quality

  • @EfirDop
    @EfirDop 6 місяців тому

    ❤❤❤❤❤

  • @ThAlEdison
    @ThAlEdison 4 роки тому +1

    In this problem sqrt(16-x^2-y^2)=sqrt(3(x^2+y^2)) becomes x^2+y^2=4, which means that the intersection of the cone and sphere are at the same as the limits on the x-y plane, but if the bounds on x had been 0, sqrt(1-y^2), then you would've had a spherical section on top of a cylinder on top of a cone. I'm not 100% sure how I would convert the equation if that was the case. It may require changing it to two separate integrals, one where phi goes from 0 to csc^-1(4) and rho goes from 0 to 4, and a second where phi goes from csc^-1(4) to pi/6 and rho goes from 0 to csc(phi).

    • @darksoles1305
      @darksoles1305 3 роки тому

      I know I'm late, but set the equations equal to each other and you will find the circle where they intersect

  • @endaleyohannes7106
    @endaleyohannes7106 3 роки тому

    cool

  • @shaikha9325
    @shaikha9325 Місяць тому

    ❤️

  • @armnhammer733
    @armnhammer733 2 роки тому

    This is wrong

  • @nickkk_03
    @nickkk_03 Рік тому

    I love you

  • @nickkk_03
    @nickkk_03 Рік тому

    Hot teacher 🥵