A proof for sin(a+b) and cos(a+b) that you probably haven’t seen before

Поділитися
Вставка
  • Опубліковано 28 гру 2024

КОМЕНТАРІ • 187

  • @blackpenredpen
    @blackpenredpen  Місяць тому +16

    2017 version: ua-cam.com/video/OcXqF8l2crI/v-deo.htmlsi=v9rleoZwaKVuCy8h

    • @blackpenredpen
      @blackpenredpen  Місяць тому +5

      Time flies!

    • @cdkw2
      @cdkw2 Місяць тому +3

      @@blackpenredpen it really does!

    • @JimmyMatis-h9y
      @JimmyMatis-h9y Місяць тому +1

      @blackpenredpen hi. Would you have any interest in making a video explaining how Wang computers used a lookup table of a few logarithms to compute functions in their calculator from the 1960s?
      Asianometry made a video about Dr. Wang and his company but didn't discuss the maths.
      Ty, love your channel.

    • @leonardobarrera2816
      @leonardobarrera2816 29 днів тому +1

      @@JimmyMatis-h9y I also want to have a video like that, plz

  • @premdeepkhatri1441
    @premdeepkhatri1441 Місяць тому +45

    Wow what a beautiful and easy to understand explanation.

  • @WahranRai
    @WahranRai Місяць тому +17

    Use of Euler formula :
    exp(i*(a+b)) = cos(a+b) + i*sin(a+b) (1)
    exp(i*(a+b)) = exp(i*a)*exp(i*b) = (cos(a) + i*sin(a))*(cos(b) + i*sin(b)) --->
    exp(i*(a+b)) = cos(a)*cos(b) + cos(a)*i*sin(b) + i*sin(a)*cos(b) + i*sin(a)*i*sin(b)
    exp(i*(a+b)) = cos(a)*cos(b) - sin(a)*sin(b) + i*((cos(a)*sin(b) + sin(a)*cos(b)) (2)
    By equating the real parts and the imaginary parts of (1) and (2) ---->
    cos(a+b) = cos(a)*cos(b) - sin(a)*sin(b)
    sin(a+b) = cos(a)*sin(b) + sin(a)*cos(b)

    • @navghtivs
      @navghtivs 29 днів тому

      Yeah this is the only way I know.

    • @maciejkubera1536
      @maciejkubera1536 27 днів тому +5

      I see circular reasoning here.
      To proof the complex-exponential formulas for trigonometric functions, you need to know their Taylor expansions.
      To know the Taylor expansions, You need to know, what the derivatives of sin and cos are.
      To know the derivatives, you need to know at least the sin of the sum formula.

    • @WahranRai
      @WahranRai 27 днів тому +5

      @@maciejkubera1536 NO !!!!!!!!!!!
      The formula is derivated from Taylor expansion of exp(i*x) and separation of the serie into 2 series composing the real part and imaginary part by grouping the terms with i.
      The real part corresponds to cos(x) and imaginary part to sin(x) --->
      exp(i*x) = cos(x) + i*sin(x)

    • @maciejkubera1536
      @maciejkubera1536 27 днів тому +4

      @@WahranRai so How did You know, that the Real part corresponds to cos(x), and the imaginary part to sin(x)?

    • @WahranRai
      @WahranRai 27 днів тому +2

      @@maciejkubera1536 I dont want to detail it because it is well know.
      Perform Taylor expansion of cos(x) and sin(x) and you will see that they correspond to the real part and the imaginary part.
      It is like that Euler did !!!

  • @witcher_the_6953
    @witcher_the_6953 Місяць тому +18

    Wow man that is seriously a great proof. I actually did a proof of this couple weeks ago using the unit circle but gotta say this one’s way more simple and just beautiful overall. Great video man really

    • @blackpenredpen
      @blackpenredpen  Місяць тому +1

      Thank you!

    • @BrianGriffin83
      @BrianGriffin83 28 днів тому

      My high school teacher proved it using the unit circle too, but I struggle remembering the proof. This is more straightforward to recall.

    • @samueldeandrade8535
      @samueldeandrade8535 26 днів тому

      This is a classical proof.

  • @ZaWarudo_TokiWoTomare
    @ZaWarudo_TokiWoTomare Місяць тому +63

    I like using matrices. Multiply an angle transformation of alpha by a matrix with an angle transformation of beta.

    • @Dravignor
      @Dravignor Місяць тому +7

      I tried proving it myself and you're right, it's even faster than the one on the video

    • @floydmaseda
      @floydmaseda Місяць тому +17

      Yes, but how many students know rotation matrices before they know basic trig functions? The proof in the video is much more suitable for a first time learner.

    • @duckymomo7935
      @duckymomo7935 Місяць тому +2

      the problem with matrices is that it abstracts things away too much -- people do not see the geometry from matrices

    • @Dravignor
      @Dravignor Місяць тому

      @@duckymomo7935 Watch 3blue1brown's Essence of Linear Algebra

    • @Dravignor
      @Dravignor Місяць тому

      @@duckymomo7935 Try watching 3blue1brown's Essence of linear algebra series

  • @TheZerwanos
    @TheZerwanos 13 днів тому

    Wow, this is such a beautifully explained proof! Such a nice geometric version of this proof your enthusiasm is contagious-it’s inspiring to see how much you love your work. Great job!

  • @letstree1764
    @letstree1764 Місяць тому +11

    Very nice proof. I only knew the proof with Complex Numbers before. Very cool

  • @dragoscalin4883
    @dragoscalin4883 20 днів тому

    Foarte foarte frumos explicat de D-ul profesor care trăiește intens prin predarea matematicii. Este o soluție foarte elegantă de deducere a acestor formule trigonometrice, explicată consider eu, foarte logic. Felicitări D-le profesor, sănătate și succes în continuare.

  • @benetogamerOFC
    @benetogamerOFC Місяць тому +3

    That's the best proof i've seen for that trigonometric relation!

  • @mayurchaudhari850
    @mayurchaudhari850 20 днів тому +1

    Me doing this in a test cuz i can't remember the formulae directly:

  • @swanandprabhutendolkar444
    @swanandprabhutendolkar444 Місяць тому +4

    Wow. Beautiful proof !!

  • @dwm1943
    @dwm1943 Місяць тому

    That is so good! I taught high school mathematics for 30 years and always dreaded having to do the traditional proof in front of the class. So messy, so many lines, so easy to make a slip!
    This de-clutters it. I think there may be a better way, using matrix multiplication, which is perhaps more general. But your neat little diagram is great.

  • @rogersmola698
    @rogersmola698 Місяць тому +7

    Wow, brilliant proof, bravo, what a nice proof !!

  • @bwahf4685
    @bwahf4685 Місяць тому +1

    Brilliant and original. 👍
    Thanks for sharing. 😉

  • @michaelbaum6796
    @michaelbaum6796 23 дні тому +1

    Great explanation, excellent👍

  • @waylluq
    @waylluq 5 днів тому

    This is the best proof I've ever found to tell 14 years old students in their first contact with trigonometry where does those formulas come from.

  • @mihaistan2208
    @mihaistan2208 Місяць тому +1

    Felicitari maxime din ROMANIA!!!

  • @adoq
    @adoq Місяць тому +7

    i thought this was a reupload lol, i definitely remember watching the 2017 version

  • @nainamohamed6195
    @nainamohamed6195 24 дні тому +1

    We can also use the scalar and vector products to prove these results.put a video to prove these results by vector method.

  • @cheeseparis1
    @cheeseparis1 Місяць тому +8

    This is beautiful. And if angles are over 90°, there is a way to work with 180° minus the angle.

  • @ArgentMind
    @ArgentMind Місяць тому +3

    Very cool proof, thanks!

  • @efegokselkisioglu8218
    @efegokselkisioglu8218 Місяць тому +1

    Very good explanation, it's actually godsent because I've been searching for a simple proof of this

    • @rogerphelps9939
      @rogerphelps9939 25 днів тому +1

      You can do it by starting with a unit vector at alpha to the x-axis. The x coordinate is cos(alpha) and the y coordinate is sin(alpha). Now rotate the vector through beta degrees. The new x and y coordinates are cos(alpha +beta) and sin(alpha+beta). These coordinates can easily be calculated.

    • @efegokselkisioglu8218
      @efegokselkisioglu8218 25 днів тому

      @@rogerphelps9939 Thank you, this one seems good aswell

  • @who-hoo-man
    @who-hoo-man 25 днів тому

    i think this is my favourite proof now

  • @sagarsidhu2814
    @sagarsidhu2814 Місяць тому +4

    our teacher taught it i love it

  • @HK_Physics
    @HK_Physics 20 днів тому

    Great job. Thank you. ❤❤

  • @isabelyflorencio
    @isabelyflorencio 18 днів тому

    ¡muy buena y bella demostracion!

  • @BillChapline
    @BillChapline Місяць тому

    In the past I have tried to derive the a+b relations by starting with the same two triangles, but was unable to see past that. Thanks for showing something that should have been so simple for me to figure for myself.

  • @mazenzidieh
    @mazenzidieh Місяць тому +4

    Very Very Nice, Thanks a lot

  • @fifiwoof1969
    @fifiwoof1969 Місяць тому +1

    How is this extended to angles bigger than 90 degrees?

  • @FundamSrijan
    @FundamSrijan Місяць тому +2

    I needed it just 2 days before but YT recommendations are yk... Drunk .

  • @DjVortex-w
    @DjVortex-w Місяць тому +1

    The two angle-sum formulas have an extremely familiar form to me, having dealt a lot with applying 2D rotation to a 2D vector, which results in an extremely similar formula (the x of the result being the sum of the original vector components multiplied by cos and sin, and the y of the result being the subtraction of the components multiplied by sin and cos).
    It's probably not a coincidence, but I can't immediately see the connection.

  • @clementfradin5391
    @clementfradin5391 Місяць тому +2

    So amazing 🤩

  • @dominiquecolin4716
    @dominiquecolin4716 Місяць тому

    Great demonstration : I wish this was shown to me instead of having to learn it, and obviously to forget it !

  • @MathProofsable
    @MathProofsable Місяць тому

    Thanks for posting this. This is the proof I give in my trig classes. It was the proof given to me. It is also a proof found on Khan Academy. I think it is the best geometric proof.

  • @shikshokio1
    @shikshokio1 Місяць тому +1

    Indeed a beautiful proof. 😀

  • @MohanV-p5b
    @MohanV-p5b Місяць тому +2

    U are a legend ❤❤

  • @mezahirhaciyev
    @mezahirhaciyev 24 дні тому

    1)sin2t=2sintcost
    2)cos2t=cos²t-sin²t
    (x=y=t)
    sin(x+y)=sinx×cosy+siny×cosx.
    cos(x+y)=cosx×соsy-sinx×siny.

  • @stantheman719
    @stantheman719 Місяць тому +1

    Brilliant Bprp.

  • @Mystery_Biscuits
    @Mystery_Biscuits 27 днів тому

    This was actually the proof I was shown first when being taught these formulae

  • @VusalKerimov-cn2ny
    @VusalKerimov-cn2ny 6 днів тому

    Suuuuupppper
    Thanks Teacher ❤

  • @generalezaknenou
    @generalezaknenou Місяць тому

    the magic of choosing the right geometrical construction for the identity

  • @stabbysmurf
    @stabbysmurf 29 днів тому

    Ha wow, that's one of the best proof-by-picture proofs I've seen.

  • @flyTeam34
    @flyTeam34 Місяць тому

    In my opinion, you can use the ruler or metrics for your drawings... But it's a great work for proofing these equations or formulas

  • @alipourzand6499
    @alipourzand6499 Місяць тому +2

    Great demo! IMHO since sin(pi-a)=sin(a), the proof stays valid for angles greater than 90°.

    • @Apollorion
      @Apollorion Місяць тому +2

      sin(pi-a) is only equal to a for a=0, so I guess you meant sin(pi-a)=sin(a).

    • @alipourzand6499
      @alipourzand6499 Місяць тому

      @@Apollorion Yes, thanks! I edited my comment.

  • @farkasmaganyos
    @farkasmaganyos Місяць тому

    Beautiful!

  • @amirgg-_-251
    @amirgg-_-251 19 днів тому

    Hey there, been watching you for a while. I recently got interested in taking a function to another function power, I saw you showed the derivative for it, can you please make a video showing the indefinite integral of it? Thanks.

  • @borgri9125
    @borgri9125 Місяць тому +3

    Does that mean that that we can use this identity's only when alpha + beta < 90 deg because triangles need to fit inside a rectangle?

    • @THiAgO-rv1ji
      @THiAgO-rv1ji Місяць тому +7

      No, it is valid for any value of α and β but it can be proved by this method only when α+β

  • @scottleung9587
    @scottleung9587 Місяць тому +1

    Very nice!

  • @TheAlx32
    @TheAlx32 25 днів тому

    Very beautiful !

  • @neilmccafferty5886
    @neilmccafferty5886 26 днів тому

    I really enjoy these diagram illustrations of the trig functions. Do you have one that explains the formulae for sin(3Theta), cos(3Theta) and Tan(3Theta)? Also is there a similar for the hyperbolic double angles? thanks muchly!

  • @tricky778
    @tricky778 Місяць тому +1

    This is awesome but it only covers restricted alpha and beta. Don't you need a generalisation proof?

    • @keescanalfp5143
      @keescanalfp5143 24 дні тому

      right yeah . at first the geometrically doable case in which lengths all are positive and angles are sharp. because elementary geometry doesn't work with negative lengths or negative values of angles . we remember the difficulties in a first time meeting the cosine rule in an obtuse angled triangle . think it was in third class of secondary school .

  • @cihanegilmez1773
    @cihanegilmez1773 28 днів тому

    Awesome man

  • @mlx321d
    @mlx321d 25 днів тому

    You're the best ❤❤❤❤

  • @caesq_r
    @caesq_r 23 дні тому

    11 days ago? Man what a coincidence, I really needed this for my finals lol

  • @tan6868
    @tan6868 Місяць тому +2

    Tanke you!!!

  • @yusufdenli9363
    @yusufdenli9363 Місяць тому

    Very nice 👍👍

  • @paulolemosmessias9460
    @paulolemosmessias9460 Місяць тому

    Very good!

  • @rudychan8792
    @rudychan8792 19 днів тому

    Interesting Proof.
    Well Done. 🙂 👍

  • @adityaagarwal636
    @adityaagarwal636 Місяць тому

    My favorite proof will always be the complex number one. Where you multiply 2 and compare real and imag parts to get the identities.

  • @moonwatcher2001
    @moonwatcher2001 26 днів тому

    Awesome ❤

  • @hosseinmortazavi7903
    @hosseinmortazavi7903 Місяць тому

    Very nice proff

  • @dalegriffiths3628
    @dalegriffiths3628 28 днів тому

    Beautiful

  • @lammatt
    @lammatt Місяць тому

    What about angles larger than pi/2 ?

  • @JulioDavidAuster
    @JulioDavidAuster 24 дні тому

    Bravo!

  • @alchemy-is-official
    @alchemy-is-official 24 дні тому +1

    My teacher taught me this before only by Vectors

  • @supermortar2862
    @supermortar2862 Місяць тому

    such a cool proof

  • @G-474-47
    @G-474-47 Місяць тому +1

    Amazing

  • @singhavinash76
    @singhavinash76 Місяць тому

    I'm sorry that this is not related to the video but is it possible to have a general formula for integral of 0 to a of sin/x dx (Not Si(a))

  • @cdkw2
    @cdkw2 Місяць тому +12

    I first saw the proof by using complex numbers, take two complex numbers in trigonometric form and rotate one by other by mutiplying, then compare coefficients. That was pretty cool to me!

    • @Cannongabang
      @Cannongabang Місяць тому +2

      But it is not truly a proof... It is a proof only if you take as assumptions either the exponential properties (and Euler Identity) or how to prove those by using power series methods (which is a pain). The only stand alone proofs requiring only geometry are these ones

    • @josenobi3022
      @josenobi3022 Місяць тому +2

      @@Cannongabang "It’s only a proof if you assume this and that" yeah that’s math

    • @Kishblockpro
      @Kishblockpro Місяць тому +4

      @@josenobi3022 he means that those assumptions arent basic enough, you have to prove them with actual basic axioms, if i could assume anything, ill just assume x is true and then its true

    • @Dravignor
      @Dravignor Місяць тому

      ​@@Cannongabang Still faster than the one on the video, and it's not like it's circular or inconsistent if you use Euler's formula/De'Moivre's theorem

    • @Kishblockpro
      @Kishblockpro Місяць тому +1

      @@Dravignor no he's saying if you do that then you have to prove demoivres theorem which is much harder than just doing it geometrically

  • @eren_gamer_2009
    @eren_gamer_2009 Місяць тому

    I also took the same approach but messed up in rectangle.

  • @davidellis1929
    @davidellis1929 Місяць тому

    Does this proof work if the sum of the angles is greater than 90 degrees?

    • @keescanalfp5143
      @keescanalfp5143 Місяць тому

      yeah we could do this ourselves . consider that the picture will of course point in other directions , and that we are forced to calculate with negative lengths which is rather odd in visual (basic) geometry .

  • @asparkdeity8717
    @asparkdeity8717 26 днів тому

    I remember this was the proof taught to us in our A level textbooks

  • @yoniziv
    @yoniziv Місяць тому

    Beautiful!

  • @ilafya
    @ilafya Місяць тому +1

    To be continued 🎉 if you change beta by -beta you will have two more trigonometric identities of sin (alpha-beta) and cos(alpha-beta) thanks

  • @muffintime2237
    @muffintime2237 Місяць тому

    I remember my sixthform teaching this in y12(A-levels) telling us to memorise it just in case this topic comes up
    it only appeared once in aqa but never in edexcel.

  • @DandoPorsaco-ho1zs
    @DandoPorsaco-ho1zs Місяць тому +1

    The "hypanuse".

  • @michaellambert8306
    @michaellambert8306 14 днів тому

    Nice proof.

  • @noteventrying27
    @noteventrying27 Місяць тому

    Amazing 🤩

  • @tricky778
    @tricky778 Місяць тому

    That is beautiful

  • @manishkujur2681
    @manishkujur2681 21 день тому

    can you make next video to
    solve 2^(1/3) without calculator (cube root of 2)

  • @Anonymous-mo7rk
    @Anonymous-mo7rk 25 днів тому

    Proofs through geometry 💘

  • @Amit_Pirate
    @Amit_Pirate Місяць тому +11

    I like flexing what I've come up with the euler's formula
    e^[ix] = (cosx+isinx) --- 1
    e^[iy] = (cosy+isiny) --- 2
    1×2
    e^[ix]×e^[iy] = (cosx+isinx)(cosy+isiny)
    => e^[i(x+y)] = (cosx+isinx)(cosy+isiny)
    => cos(x+y)+isin(x+y) = cosxcosy + icosxsiny +isinxcosy + i²sinxsiny
    => cos(x+y)+isin(x+y) = cosxcosy - sinxsiny + i(sinxcosy + cosxsiny)
    Comparing real and imaginary part:
    cos(x+y) = cosxcosy - sinxsiny
    sin(x+y) = sinxcosy + cosxsiny
    Fun fact, you can prove the Pythagoras theorem using it, making Pythagoras theorem proven using trigonometry

    • @Victor_hehe
      @Victor_hehe Місяць тому +1

      wow

    • @Kero-zc5tc
      @Kero-zc5tc Місяць тому +1

      You wouldn’t have happened to look at the other proof bprp linked in his comment would you?

    • @Amit_Pirate
      @Amit_Pirate Місяць тому +1

      @Kero-zc5tc ooh I just noticed now that you pointed out

    • @Amit_Pirate
      @Amit_Pirate Місяць тому +1

      @Kero-zc5tc I had come up with this when my friend and I were trying to come up with a proof for double angle identify. I had just found out about Euler's identify so I was applying it everywhere lol.

    • @Kero-zc5tc
      @Kero-zc5tc Місяць тому +1

      @@Amit_Pirate I understand the feeling totally of wanting to use it

  • @sebastianparamera2424
    @sebastianparamera2424 24 дні тому

    That's the standard high school proof of these identities, as far as I'm concerned.

  • @cyorter7737
    @cyorter7737 Місяць тому +12

    "Wait I've already seen this."
    * reads description*
    "Oh it's a remake nice."
    By the way: I love this proof

  • @Ubencommentar
    @Ubencommentar Місяць тому

    Do 100 trig equation and trig identities in a row

  • @abduramen
    @abduramen 26 днів тому

    Does i = -i???

  • @AFSMG
    @AFSMG 26 днів тому

    MARAVILLOSO

  • @UnicornGarcy
    @UnicornGarcy Місяць тому

    Thanks bruzz 🙏

  • @pi____pi
    @pi____pi 19 днів тому

    Can anyone tell me hot to find the integral of (cot(sqrt(x)+tan(sqrt(x)) dx. I looked on internet but no solution is present there.

  • @bridgeon7502
    @bridgeon7502 Місяць тому

    Thanks tuzz 🙏

  • @ravindrakadam687
    @ravindrakadam687 28 днів тому

    Genius

  • @ChromaticPixels
    @ChromaticPixels Місяць тому

    this is how i learned it actually :>

  • @TheRizzler634
    @TheRizzler634 Місяць тому

    This is exaclty how AOPS “precalculus” proves it 😭😭😭

  • @Budgeman83030
    @Budgeman83030 12 днів тому

    All I remember from a previous bprp video is that the symbol for alpha equals fish

  • @chillwhale07
    @chillwhale07 Місяць тому

    How can you just assume the hypotenuse is 1?

    • @mazterlith
      @mazterlith Місяць тому

      He is constructing the rectangle and one part of that is to set that length to 1. You will notice that no lengths had any value before he set it to 1. If you still dont like it, you can set it an arbitrary "a" and still get the same proof, just scaled by "a".

    • @chillwhale07
      @chillwhale07 Місяць тому

      @mazterlith not that I don't like it but more like "I don't get it" but thank you for helping me out

    • @richardhole8429
      @richardhole8429 Місяць тому +1

      It makes the math easy with 1. You could make it any arbitrary number and only add a few steps to make the value cancel out.

  • @cameronspalding9792
    @cameronspalding9792 Місяць тому

    Once it has been proven for alpha and beta between 0 and pi/2 (with
    alpha + beta = pi/2), it then holds for all complex alpha and beta. This is a consequence of the identity theorem in complex analysis

  • @HeckYeahRyan
    @HeckYeahRyan 21 день тому

    this is cool

  • @andypan4936
    @andypan4936 Місяць тому

    This would be the way Euclid or Pythagoras would use to prove this trig identity.

  • @kaluvasrinivas9716
    @kaluvasrinivas9716 24 дні тому

    Nice

  • @harsh3198
    @harsh3198 Місяць тому

    My teacher showed me this proof and told after that it is not valid for all alpha as alpha and beta can be larger then pi/2 then he told me that only circle one is valid