Nullspace Column Space and Rank

Поділитися
Вставка
  • Опубліковано 10 лют 2025

КОМЕНТАРІ • 145

  • @blackpenredpen
    @blackpenredpen 6 років тому +276

    Thanks, I am taking my linear algebra exam within an hour. I don’t want to say this video is helpful, but this video is super helpful!

    • @drpeyam
      @drpeyam  6 років тому +26

      Hahaha

    • @wkingston1248
      @wkingston1248 6 років тому +21

      I hope you already passed your LA exam years ago lol.

    • @ssdd9911
      @ssdd9911 5 років тому +4

      i m surprised that u could find time to take linear algebra despite ur busy schedule

    • @awesomecodeyay8382
      @awesomecodeyay8382 2 роки тому +3

      wait, I thought you were a university professor? Why are you taking Linear Algebra ??

    • @Apuryo
      @Apuryo Рік тому

      I actually have the exam in three hours 💀

  • @davidc.7305
    @davidc.7305 4 роки тому +73

    There's no greater feeling than clicking on a video and having all your doubts and questions washed away in one sitting. Thank you, this was extremely helpful!

  • @nantech431
    @nantech431 11 місяців тому +5

    There's no greater feeling than clicking on a video and having all your doubts and questions washed away in one sitting. Thank you, this was extremely helpful!
    Thank you sir!

    • @drpeyam
      @drpeyam  11 місяців тому +2

      Happy to help!

  • @Sand7Clipper
    @Sand7Clipper Рік тому +14

    "every answer in linear algebra is row reduction"
    Exactly what I was thinking! Thank you sir for making cramming fun and effective 👏

  • @cemcalsar3112
    @cemcalsar3112 3 роки тому +8

    I am watching this again and again.It is masterpiece,you explained everything in 20 munite that my prof. couldnt explain to me in 3 weeks.Thank you so much,Sir

    • @cemcalsar3112
      @cemcalsar3112 3 роки тому

      ı am here before the every linear algebra exam😂😂

  • @picnicbros
    @picnicbros 4 роки тому +6

    Thank you so much! This video cleared the confusing I was having. My professor just threw the formula for rank nullity theorem and I couldnt understand why it was like that. This video explained it nicely and added a gag to it too. Wish I had you as my professor!

  • @Maxd-c4v
    @Maxd-c4v Місяць тому

    thank you for such a clear video! You explained it really well and have a passion for the subject that is hard to not follow! thanks again, all the best!

  • @kagamitaiga4381
    @kagamitaiga4381 Рік тому

    Honestly! This is so much helpful...I have my LA exam in an hour and with no preparation, I just watched this video now and gosh it felt good...

  • @iscotwori6905
    @iscotwori6905 Рік тому +2

    😂😂😂 the way he began am literally two hours away from my exam

  • @onira316
    @onira316 2 роки тому +1

    I actually do have an linear algebra exam in an hour and needed this video so badly !

  • @Tkc__
    @Tkc__ Рік тому

    Bro you’re too good at teaching this concept… I’m crystal clear now, thx a lot!

  • @wiz1537
    @wiz1537 Рік тому

    What a life saver! I wish i saw this video earlier,, I have my la exam tomorrow and i was still having hard time understanding all those concepts,, and this single video untangled everything in my brain:) You r not even explaining in my mother tongue but you got me better than my own professor who speaks the same language as me hahaha
    Thank u so much!!!!

  • @mohammedal-haddad2652
    @mohammedal-haddad2652 5 років тому +6

    I liked the M and N acronyms rule. Thank you very much for this lecture.

  • @pinkkitty6553
    @pinkkitty6553 Рік тому +1

    thank you so much, you saved my life.

  • @codycrary7149
    @codycrary7149 3 роки тому +6

    Thank you so much! I love your energy and enthusiasm for math!

  • @killer4791
    @killer4791 2 роки тому

    + Respect
    Need more enthusiastic teachers/lecturers/professors like you
    May Lord Shiva Bless you.

  • @ThinkDifferentlier
    @ThinkDifferentlier 6 років тому +26

    meat(A) + fat(A) = steak(A)

  • @coolpopk
    @coolpopk 4 роки тому +1

    Thanks for posting this! I have a linear algebra final next week and I was stressing over this topic. Thank you!

  • @abdulnafayazam3213
    @abdulnafayazam3213 2 роки тому

    What a top G. Huge respect for you brother

  • @JordzzO
    @JordzzO 2 місяці тому

    you are the goat mate thank you so much your teaching is incredible

    • @drpeyam
      @drpeyam  2 місяці тому

      You're very welcome! 😊

  • @terminal9229
    @terminal9229 4 роки тому +2

    I don't know why his way of teaching makes me happy ...Anyways thanks for clear explanation of concepts .

  • @cgfam5256
    @cgfam5256 4 роки тому +2

    Thank you so much, sir! You clarified my confusion hell out of me!

  • @Jessi-lw3iw
    @Jessi-lw3iw 8 місяців тому

    Thanks for the amazing video ! I found hope in linear algebra again !

    • @drpeyam
      @drpeyam  8 місяців тому +1

      You are welcome!

  • @aztjar9425
    @aztjar9425 2 роки тому

    Your way of teaching is so good👍

  • @sgnfxn
    @sgnfxn Місяць тому

    Thankyou Sir, crystal clear explanation

  • @Helena-vb7mw
    @Helena-vb7mw 10 місяців тому

    Thanks! explaining everything in very simple way

    • @drpeyam
      @drpeyam  10 місяців тому

      You're welcome!

  • @sazer2411
    @sazer2411 9 місяців тому

    This channel is soo underrated

    • @drpeyam
      @drpeyam  9 місяців тому

      Thank you!!!

  • @nonnamoon5960
    @nonnamoon5960 3 роки тому

    Thank you for this video😄This video make me pass the exam in linear algebra 😄I like it

  • @glennxhose7217
    @glennxhose7217 Рік тому

    Ooh I loved this algebra craziness ❤

  • @shymaamajeed8587
    @shymaamajeed8587 3 роки тому

    Realy i like linear algebra because your explain is very very good thank y so much

  • @mnstrnmocutsy5441
    @mnstrnmocutsy5441 4 роки тому

    u make maths so interesting. thanks Sir. it was so clear

  • @FarhanObaid-cl7yt
    @FarhanObaid-cl7yt Рік тому +1

    Brilliant!! Absolutely Brilliant!

  • @mariamacamaraderie2613
    @mariamacamaraderie2613 Рік тому

    thank you so much, this was an eye opener.

  • @lj123-g9d
    @lj123-g9d 2 роки тому +1

    So helpful sir. Thank you so much

  • @melikekaralar
    @melikekaralar Рік тому

    your energyyyyy wake me up!!

  • @kamleshraghuwanshi4634
    @kamleshraghuwanshi4634 5 років тому

    You are so sweet...
    You explained very easily, the most confusing topic for me in linear algebra.

  • @Memes_uploader
    @Memes_uploader 3 роки тому

    OMG a lot of very useful things with only one example Thank you so much

  • @VengatRamanan01
    @VengatRamanan01 5 років тому

    Thanks so much...I am going to watch through all your videos

  • @nerodant85
    @nerodant85 3 роки тому

    Thank you for the video Dr. Peyam

  • @tomasgoncalves6736
    @tomasgoncalves6736 Рік тому

    Thank you very much for the video!

  • @ahmad-jd7nh
    @ahmad-jd7nh 2 роки тому

    من طرف الدكتور عيسى قيقية , كل الدعم❤❤😘

  • @himanshuraj5837
    @himanshuraj5837 Рік тому

    hey sir thanks a lot you cleared any of my doubts

  • @azazahmed1842
    @azazahmed1842 2 роки тому

    Ok, This was actually a Great video THANK A lot sir!!!!!

  • @dineshashar8255
    @dineshashar8255 7 місяців тому

    Great Examples

  • @hofstra7591
    @hofstra7591 3 роки тому

    Wow, thanks for the video, your explanations helped me a lot.

  • @benhigh9302
    @benhigh9302 2 роки тому

    well done and thank you. extremely clear information and process

  • @hellozeus
    @hellozeus 4 роки тому +1

    Thank you for this video!

  • @thenewdimension9832
    @thenewdimension9832 Рік тому

    You Made my day ❤

  • @amardexter9966
    @amardexter9966 3 роки тому

    If you imagine 2x1 matrix, the transformation takes 2D space to 1D space, meaning there exists a line in the 2D space that goes to origin after the transformation, meaning that it's the null space of the matrix. Since column space is the output span, and null space is in a sense number of dimensions lost, the N (original number of dimensions) becomes the sum of column space and null space.

  • @faridbabayev1657
    @faridbabayev1657 5 років тому

    THANK YOU SO MUCH! God bless you sir!

  • @abhashkumarsingh2673
    @abhashkumarsingh2673 5 днів тому

    One question I encountered
    In case of equations Ax=0.
    Suppose that we consider row vectors instead of column vectors.
    Essentially the dot product of row vectors is 0 with x, which means that the x is perpendicular to all the row vectors.
    Why is x perpendicular to all the row vectors?
    I do understand that dot product being 0 means perpendicularity. I want to draw an insight here somehow.

  • @mauricioconlaparva
    @mauricioconlaparva 2 роки тому

    Thank you! Explained very well

  • @SheeNdegwa-lw4nr
    @SheeNdegwa-lw4nr 9 місяців тому +1

    I have exactly one hour 2 minutes to take my linear algebra exam 😭

  • @QuantumByt3s
    @QuantumByt3s 2 роки тому

    You are a fantastic teacher :)

  • @mustafaaljumayli6615
    @mustafaaljumayli6615 Рік тому

    Thank you so much!

  • @pborah3235
    @pborah3235 5 років тому +1

    thank you sir...its really helpful 😊

  • @AbramFontanilla
    @AbramFontanilla 2 роки тому

    Amazing video. Thank you!

  • @XanderGouws
    @XanderGouws 6 років тому +3

    4:17 - since those are 3 linearly independant vectors in R³, their span should be all of R³, so wouldn't the columns of the identity matrix also serve as a sufficient basis?

    • @XanderGouws
      @XanderGouws 6 років тому

      Or any other set of 3 independant vectors

    • @drpeyam
      @drpeyam  6 років тому

      Yes, of course!

    • @LuisBorja1981
      @LuisBorja1981 6 років тому +2

      @@drpeyam and what about the 3 L.I. vectors of the row-reduced matrix? Shouldn't they span R3 as well? I didn't understand the "span non-preservation property" between the L.I. vectors in the original matrix vs the L.I. vectors in the row-reduced matrix

  • @SmileyHuN
    @SmileyHuN 6 років тому +3

    Awww we just learned rank recently, vector system's rank, rank of a linear function and ofc matrix rank. Also the Kronecker rank theorem and so on ^_^

  • @10c-p9z
    @10c-p9z Рік тому

    you are the best ever.

  • @luiavalos92
    @luiavalos92 4 роки тому

    Wonderful video Professor.

  • @francescovitale44
    @francescovitale44 3 роки тому

    you are a great man

  • @deepikasharma7736
    @deepikasharma7736 3 роки тому

    Thank you so much sir

  • @neeldesai501
    @neeldesai501 2 роки тому

    super informative thank you!!

  • @josemidebleser8281
    @josemidebleser8281 3 роки тому

    THANK YOU!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! so helpful!!!!

  • @victorosuta2556
    @victorosuta2556 3 роки тому

    It's more than super helpful 🙂

  • @pranavgandhi9224
    @pranavgandhi9224 4 роки тому

    Amazing sir..... thankyou 👍

  • @fadibenzaima5348
    @fadibenzaima5348 8 місяців тому

    Is there any video that explains these concepts and why row reduction works geometrically ?

    • @drpeyam
      @drpeyam  8 місяців тому

      You can check out the playlist!!

  • @gilmaferrer202
    @gilmaferrer202 5 років тому

    Thank you, you are excellent!

  • @kr4156
    @kr4156 10 місяців тому +2

    00:13 I have the exam in an hour 😂😂

  • @SauravKumar-12354
    @SauravKumar-12354 Рік тому

    sir , why didnt you wrote the simplified matrix in row space span ? u said it preserves the span .

  • @glennxhose7217
    @glennxhose7217 Рік тому

    Tell you what. This video saved my test 2😂. Took something of 2 weeks into 20 minutes 😂

  • @zacharietelles7626
    @zacharietelles7626 2 роки тому

    Very helpful thanks!

    • @drpeyam
      @drpeyam  2 роки тому

      You’re welcome!

  • @keldonchase4492
    @keldonchase4492 3 місяці тому

    Hi Dr Peyam!
    If you have time, I was wondering if you could help me prove two things regarding column spaces and null spaces.
    I’m supposed to prove Nul(B) ⊂ Nul(AB).
    Here’s my attempt at the proof:
    Nul(B) contains all the vectors x that make the homogeneous Bx=0.
    We are allowed to left-multiply both sides by the matrix A.
    ABx = A0
    ABx = 0
    So I think we can say that if Bx=0, then ABx=0.
    If x makes Bx = 0 true, then x makes ABx=0 true.
    If x belongs to the null space of B, then x belongs to the null space of AB.
    Thus, we have proven that Nul(B) ⊂ Nul(AB).
    Is this reasoning correct or flawed?
    I’m also supposed to prove Col(AB) ⊂ Col(A).
    This one is trickier for me.
    Col(AB) contains all the output vectors y such that (AB)x = y.
    By the property of associative matrix multiplication, we are allowed to shift the parenthesis to say A(Bx) = y.
    If (AB)x = y then A(Bx) = y.
    So I’m seeing that if we can use AB to obtain the image vector y, then we can use A to obtain the same image vector y.
    But does this demonstrate that Col(AB) is a subset of Col(A)?
    I’ve been so confused by this for a long time and was wondering if you would be able to help clear up the confusion for me.
    Thank you so much!

  • @ChristopherEvenstar
    @ChristopherEvenstar 5 років тому +2

    I like how two seemingly parallel lines in this video seem to intersect somewhere off screen to the right. Do the top and bottom of the whiteboard form a basis of the column space of the whiteboard from this angle?

  • @ElifArslan-l9g
    @ElifArslan-l9g 2 роки тому

    thank you

  • @nihalsahil9074
    @nihalsahil9074 Рік тому

    Thanks sir

  • @MoooGta-de1xb
    @MoooGta-de1xb Рік тому

    How are you teaching sooo good sir

    • @drpeyam
      @drpeyam  Рік тому +1

      Awwwww thank you!!!

  • @tabarakalmosawi6659
    @tabarakalmosawi6659 4 роки тому

    Many thanks!!!

  • @mohamedshahin6177
    @mohamedshahin6177 5 років тому

    thank you very much

  • @nitinshrinivas5115
    @nitinshrinivas5115 3 роки тому

    THank you for this vedio.... :)

  • @mardzj
    @mardzj 4 роки тому

    4:04 Row reduction destroys span? Why, columns 1, 3 and 5 are Linear independent and span R3 just like before row reduction
    Is the span of the matrix all 5 columns?

    • @drpeyam
      @drpeyam  4 роки тому

      Yeah but this example is just a coincidence

  • @Smoothcurveup52
    @Smoothcurveup52 Рік тому

    Thanku sir

  • @naturelover82003
    @naturelover82003 3 роки тому

    lot of thanks🥰🥰

  • @nicolasrios7198
    @nicolasrios7198 6 років тому +1

    Dr. Peyam should get waves 🌊

  • @renardtahar4432
    @renardtahar4432 3 роки тому

    very nice!

  • @yousefmayeli7584
    @yousefmayeli7584 5 років тому

    First thanks it was very useful second I got headache for camera’s angle

  • @sarimshafiq8826
    @sarimshafiq8826 3 роки тому

    I was watching etc etc n etc then found it now I regret why didn't I found it earlier.

  • @toughconstruction5044
    @toughconstruction5044 5 років тому +3

    RoWs and nOse

    • @drpeyam
      @drpeyam  5 років тому +1

      Columns Schmolumns 😂

  • @macywallace7904
    @macywallace7904 4 роки тому

    when you are finding the Col(A) can you use the RREF or do you have to use REF

    • @drpeyam
      @drpeyam  4 роки тому

      REF is enough

    • @macywallace7904
      @macywallace7904 4 роки тому

      @@drpeyam but can you do rref and the answer be the same?

    • @drpeyam
      @drpeyam  4 роки тому

      Yes, since the pivots are still at the same positions

  • @holys6348
    @holys6348 3 роки тому

    for the colspace of A. I think you needed to out "span" of such 3 vectors

  • @briankichini7380
    @briankichini7380 5 років тому

    yea the video is super super good

    • @drpeyam
      @drpeyam  5 років тому

      Thanks so much!

  • @joynanjero6236
    @joynanjero6236 Рік тому

    The negative nine and positive two... Shouldn't that be positive nine ? Kindly inquiring

    • @drpeyam
      @drpeyam  Рік тому

      I think so, see comments

  • @Rundas69420
    @Rundas69420 6 років тому

    I bet that when you play Super Smash Bros, you always go for linear combos.
    These are the best ones :P

    • @drpeyam
      @drpeyam  6 років тому +1

      Hahaha, of course 😂

  • @insert_a_good_name_here4585
    @insert_a_good_name_here4585 4 роки тому

    Heck, within 30 seconds I feel so called out lol

  • @lucasmoro8775
    @lucasmoro8775 8 місяців тому

    valeu paee

  • @sharifahmed45
    @sharifahmed45 5 років тому

    Thanks Dr Peyam, is there anyway you and your team will do a real analysis for those struggling in undergrad schools and introductions of proofs. Thanks as always, and it is a pleasure to watch your output.

    • @drpeyam
      @drpeyam  5 років тому

      Real Analysis ua-cam.com/play/PLJb1qAQIrmmDs56gwp6yeytyy0wxWLac8.html

  • @believeinyourself811
    @believeinyourself811 11 місяців тому

    Bro he is hacker 😮 🔥

  • @manacast324
    @manacast324 2 роки тому

    “maybe you have an exam in an hour”
    Me: 😳 he caught me

  • @somnathkoley7317
    @somnathkoley7317 3 роки тому

    Row space and column space be like: I am inevitable.
    Dr peyam: and I am......🤏 🤏Dr peyam.
    Thanks for helping me sir.