Heat Transfer L12 p1 - Finite Difference Heat Equation

Поділитися
Вставка
  • Опубліковано 10 січ 2025

КОМЕНТАРІ • 16

  • @shawnmcelwain7230
    @shawnmcelwain7230 9 років тому +40

    Your series of lectures from Thermo, Fluid Dynamics, and Heat Transfer, are getting me through this ME degree. I can't thank you enough. Please keep posting lectures!

    • @KhmerH20
      @KhmerH20 9 років тому

      +Shawn McElwain yes yes yes :D

    • @geologiaparatodos4361
      @geologiaparatodos4361 4 роки тому

      I say the same thing, you videos are interesting

  • @georgechristou7982
    @georgechristou7982 9 місяців тому +1

    Brilliant videos 👍👍👍

  • @IIMartinezII
    @IIMartinezII 5 років тому

    thank you very much Ron, your explanations are super clear!

  • @kingoftheworld6151
    @kingoftheworld6151 7 років тому +1

    perfect explanation, thanks for your time

  • @zakariaaouchette5702
    @zakariaaouchette5702 8 років тому +1

    thank u so much for the video, explicite or implicite which is better?

  • @sajanthapa8962
    @sajanthapa8962 8 років тому

    Helpful video..thanks sir

  • @bwame
    @bwame 8 років тому

    Very helpful video!

  • @saravela6115
    @saravela6115 3 роки тому

    I cant find the excel spreadsheet you mentioned you were going to have a video on?? Im very interested in it. Please let me know.

    • @ronhugo6225
      @ronhugo6225  3 роки тому

      Go to my UA-cam page, click on Detailed Course Index in the upper right of the page, then go to Heat Transfer and you will find it on that page under Additional Resources

  • @husnainhyder6713
    @husnainhyder6713 5 років тому

    Sir you thought great
    but if we want to descreatised the third derivative in this form then how we will do
    please can you explain.
    Thanks

    • @pipertripp
      @pipertripp 3 роки тому

      It's basically the same process. You have to cook up a finite difference approximation for 3rd derivative by finding a way to isolate the 3rd derivative while eliminating the f' and f'' terms from the Taylor series expansion. Wikipedia has a great page on Finite Difference that will show you difference equations for a lot of the common derivatives as well as forms with different levels of accuracy. The one depicted here is order delta x squared, but you can generate higher accuracy by including more points in the difference equation.

  • @joshuacharlery6060
    @joshuacharlery6060 3 роки тому +1

    thank you

  • @ahmedtariq90
    @ahmedtariq90 5 років тому

    thank you so much