everyone loves a nice recursive sequence!

Поділитися
Вставка
  • Опубліковано 18 лис 2024

КОМЕНТАРІ • 43

  • @chengningloong7691
    @chengningloong7691 8 місяців тому +57

    The trick of t= sin^2 theta is really amazing

  • @giacomorapisardi877
    @giacomorapisardi877 8 місяців тому +18

    It is worth noticing that this sequence is the chaotic case of the logistic map, which is related to the bit-shift map exactly by the transformation t_n = sin^2(2*pi*a_n). The bit shift map applied to a number x in [0,1] yields 2x if x

  • @kingfrozen4257
    @kingfrozen4257 7 місяців тому +1

    The value 4 for logistic map is a well-known case in chaos theory that has a analytic solution.

  • @telraj
    @telraj 8 місяців тому +14

    It is interesting that the solutions for t, as the number of iterations goes to infinity, converges in distribution to a beta(1/2,1/2) distribution which is the "stationary distribution" of the logistic map for r=4

  • @aweebthatlovesmath4220
    @aweebthatlovesmath4220 8 місяців тому +5

    I love solutions that make you say "how did they come up with this"

  • @franolich3
    @franolich3 8 місяців тому +3

    The values of t giving a[n]=0 can be expressed as:
    0, 1,
    1/2,
    1/2 ± √(2)/4
    1/2 ± √(2 ± √2)/4,
    1/2 ± √(2 ± √(2 ± √2))/4,

    1/2 ± √(2 ± √( … ± (2 ± √2) … )) / 4
    where the deepest nesting of square roots is n-3.

  • @saladinayoubi9773
    @saladinayoubi9773 8 місяців тому +3

    Bonjour ! I don't undestand all words in englisrh but your explination still "clair" . j'ai appris beaucoup d'astuces avec vous. . Merci beaucoup. Continuez !!!

  • @markhagerman3072
    @markhagerman3072 8 місяців тому +1

    Thank you! I've been looking for the solution to this problem, off and on, for around thirty years.

  • @michelebrun613
    @michelebrun613 7 місяців тому

    Really nice demonstration

  • @dougrife8827
    @dougrife8827 8 місяців тому +1

    I like the closed form solution found for the sequence by clever use of the sine function and proof by induction More generally, given any value of t the formula can be used to calculate the result of nth iteration by first finding theta = arcsine(sqrt(t)) and plugging this angle into the sin^2(2^n*theta). Now this obviously works for all values of t on the closed interval [0,1] but it also works for all real t outside this interval using complex numbers. That is, the arcsine(x) for values of x outside the closed interval [-1,1] is given by -i*ln(i*x + sqrt(1 - x^2)) which can be derived from Euler’s formula. Even though the resulting angle theta is complex, substitution into sin^2(2^n*theta) returns the expected real value for nth iteration of the sequence. The formula I derived for the nth iteration when t > 1 is 1 - ((sqrt(t) + sqrt(t - 1))^(2^n ) + (sqrt(t) + sqrt(t -1))^(-2^n))^2/4. For example, if t = 4 and n = 3 the result is -354,079,488 the same as the direct calculation. Notice that this formula does not use either the natural log or the trig functions. They dropped out after simplification.

  • @JKKJ-c3s
    @JKKJ-c3s 8 місяців тому +4

    It seems pretty easy to get iterated radicals instead of sines. Solving y=4x(1-x) for x, gives x=(1±sqrt(1-y))/2. Starting from y=0 we get 0 and 1, y=1 gives 1/2 and y=1/2 gives (2±sqrt(2))/4. And here is where the fun begins - if a=2±sqrt(2±sqrt(2+...) iterated finitely many times, then y=a/4 gives x=(2±sqrt(a))/4. So, after checking that "a/4s" don't get larger than 1, we see that t = 0,1, and all the numbers of the form a/4 with up to 2022 nested surds.

  • @mhm6421
    @mhm6421 8 місяців тому +1

    As bayrakları as as as İstiklal Marşı'nın kabulünde Michael Penn

  • @hansonchar
    @hansonchar 8 місяців тому

    If only there was a way to find a closed form for this recurrence.

  • @shacharh5470
    @shacharh5470 8 місяців тому

    You can use a generating function to show that t = 0

  • @raeturner2177
    @raeturner2177 8 місяців тому

    You were computing a2024, which is an+1. Shouldn’t you have stopped the sequence of theta at 2^2023 pi?

  • @PULLABHATLAMEDHA
    @PULLABHATLAMEDHA 8 місяців тому +1

    pls derive ramanujans equations of near misses to fermats last theorem and post a video

  • @Keithfert490
    @Keithfert490 8 місяців тому +4

    Michael, is there a place to send you problems?

    • @Keithfert490
      @Keithfert490 8 місяців тому +1

      Just saw the google form in the description! Never mind

  • @charleyhoward4594
    @charleyhoward4594 8 місяців тому +2

    audio is almost mute

  • @mhm6421
    @mhm6421 8 місяців тому +1

    Was the reason you uploaded this today it's our anthem's anniversary? (103rd year!)

  • @ВикторПоплевко-е2т
    @ВикторПоплевко-е2т 8 місяців тому

    Can't you just say that t is in the interval [0;1]?

  • @dugong369
    @dugong369 8 місяців тому +2

    What's wrong with this reasoning: if a(n+1) = 4 * a(n) * (1-a(n)), and a(n+1) = 0, then either a(n) = 0 or (1-a(n)) = 0. So a(n) = 0 or a(n) = 1. By induction, the same is true of a(n-1), a(n-2), ... a(0). ???

    • @t567698
      @t567698 8 місяців тому +10

      You are stuck with the case a(n)=1.

    • @dugong369
      @dugong369 8 місяців тому

      @@t567698 Doh. Thanks.

    • @burk314
      @burk314 8 місяців тому +2

      If a(n) = 1, then setting a(n-1)=a for simplicity, 4a(1-a)=1 giving 4a^2-4a+1=0 or (2a-1)^2=0. Hence a(n-1)=a=1/2. So you could say that a(n-1) can be 0, 1/2, or 1. Then a(n-2) could be any of these same values plus two more for the case when a(n--1) = 1/2. And so on.

    • @dugong369
      @dugong369 8 місяців тому +1

      Thanks to you both. Don't know what I was thinking.

  • @kkanden
    @kkanden 8 місяців тому

    neat

  • @AnshumanMondal-u4e
    @AnshumanMondal-u4e 8 місяців тому

    First view first comment

  • @KAS_ACADEMY
    @KAS_ACADEMY 8 місяців тому

    Please,Türkiye not Turkey.
    Best Regards

    • @rainerzufall42
      @rainerzufall42 8 місяців тому +4

      France, not Fransa! Are you okay with that? This is silly!

    • @KAS_ACADEMY
      @KAS_ACADEMY 8 місяців тому

      @@rainerzufall42 not silly; The official name is Türkiye

    • @rainerzufall42
      @rainerzufall42 8 місяців тому +1

      @@KAS_ACADEMY Then you'll call France "France" instead of "Fransa" in Turkish in future?

    • @KAS_ACADEMY
      @KAS_ACADEMY 8 місяців тому

      @@rainerzufall42 İt is nit about how you call them; it is about how to write official name

    • @rainerzufall42
      @rainerzufall42 8 місяців тому +1

      @@KAS_ACADEMY So you will be calling France by it's official name "France" in Turkish? I don't think so! You want to determine Turkeys official name in a language like English, even with a letter that doesn''t exist in English, why not even use Chinese characters or Kanji? Tell me, that's not silly! I think, I'll call it rather 土耳其! That's my decision, live with it!