f(2x) = f(x)

Поділитися
Вставка
  • Опубліковано 1 січ 2025

КОМЕНТАРІ • 256

  • @sjoerdo6988
    @sjoerdo6988 3 роки тому +86

    For a bit of a stronger statement, the function does not have to be continuous everywhere, but only continuous at x=0 for the first case to hold

    • @ompatil7613
      @ompatil7613 11 місяців тому

      An even stronger statement, the first case is the only solution if and only if f(x) is continuous at x=0

  • @DrWeselcouch
    @DrWeselcouch 3 роки тому +259

    I love how Dr. Peyam always thanks us for watching before we even watch the video! Is Dr. Peyam really from the future? 🤔

    • @guccisavage2739
      @guccisavage2739 3 роки тому +8

      Ayh! Cool to see you here Dr. Weselcouch! Love your irrational number approximation videos!

    • @DrWeselcouch
      @DrWeselcouch 3 роки тому +3

      @@guccisavage2739 Thanks I'm glad you like them!

    • @rooksman64
      @rooksman64 11 місяців тому +2

      he was the only one that showed up to Dr. Hawking’s party for time travelers.

    • @Niohimself
      @Niohimself 11 місяців тому

      It is a simple observation that in the future, we have in fact watched the video in it's entirety.

    • @manolski7615
      @manolski7615 11 місяців тому

      i’d like to think that he thanks us for tuning in his vids because it seems he appreciates that hehe

  • @l.w.paradis2108
    @l.w.paradis2108 Рік тому +38

    Wow, I realized intuitively that it must be the constant function but had no idea how to prove it. This was so nicely done, too. Really elegant.

  • @NihilistEmier
    @NihilistEmier 3 роки тому +82

    What if my teacher were half as excited as him ?

    • @blankblank103
      @blankblank103 3 роки тому +15

      Then half your class would go on to win Field medals

  • @yoavmor9002
    @yoavmor9002 11 місяців тому +2

    Every member in the equivalence class set has a single member on the domain:
    D := (-2, -1] U {0} U [1, 2)
    And so: Given absolutely any function on the domain D, you can extend it to create a function f that matches the given condition. Given any matching f, you can also extract such a g.

    • @yoavmor9002
      @yoavmor9002 11 місяців тому

      Curiously enough, if g is continuous on (-2, -1] and on [1, 2), as well as meeting the criteria that as n→2: g(n)→g(1), as well as n→-2: g(n)→g(-1); than f will be continuous everywhere EXCEPT on x=0
      (for f to be continuous at x=0, g and f would need to be a constant)

  • @OMGclueless
    @OMGclueless 3 роки тому +14

    7:53 was great 😂 "But also negative one, negative two... Oh hmm-hmm-hmm... *Nah*... But also negative one, negative two!"

    • @simonmarcstevenson
      @simonmarcstevenson 11 місяців тому

      Yes, …, -1/2, -1, -2, -4, …. Is a different equivalent class than …, 1/2, 1, 2, 4... . Dr Peyam realized this as he was talking. 😊

  • @smiley_1000
    @smiley_1000 3 роки тому +59

    Please consider the function f(x)=sin(2pi*log_2(x)). It fulfills the property and is not constant, but unfortunately it is only defined on ℝ⁺, which is also why your proof does not apply to it as neither f(0) nor the limit of f(1/2^n) as n goes to infinity are defined.

    • @Noname-67
      @Noname-67 3 роки тому +2

      Your function is wrong because it only work if x is a integer power of 2, it doesn't work when x=3 or something else, it doesn't work

    • @justinbagci5656
      @justinbagci5656 3 роки тому +20

      ​@@Noname-67 multiplying the input by 2 adds 2pi to the angle which doesnt change the value of the function so it does actually work, try it in wolfram alpha

    • @Noname-67
      @Noname-67 3 роки тому +1

      @@justinbagci5656 that's only work if x is an integer power of 2. For example f(3) is something around 1 while f(6) is something around -1
      Edit: I think I miscalculated something

    • @smiley_1000
      @smiley_1000 3 роки тому +18

      @@Noname-67 You really did miscalculate something because
      sin(2pi*log_2(6))
      = sin(2pi*log_2(2*3))
      = sin(2pi*(log_2(2)+log_2(3)))
      = sin(2pi*(1+log_2(3)))
      = sin(2pi+2pi*log_2(3)))
      = sin(2pi*log_2(3)))

    • @helloitsme7553
      @helloitsme7553 3 роки тому +7

      wow thats a good one. yes it would be considered discontinuous on the whole on ℝ so thats why it isnt mentioned there. but indeed thats one of the equivalence relations examples discussed later in the videos

  • @f5673-t1h
    @f5673-t1h 3 роки тому +50

    You can think of this equivalence relation as just two numbers being equivalent if they're shifts of each other in binary.
    If we were using 10 instead of 2, it would be clearer: 123, 0.123, and 12300000 would be all equivalent.

    • @adityadwivedi4412
      @adityadwivedi4412 3 роки тому +4

      There is no 2 and 3 in binary

    • @f5673-t1h
      @f5673-t1h 3 роки тому +11

      @@adityadwivedi4412 I was talking about base 10 when I said "if we were using 10 instead of 2".

    • @Jack_Callcott_AU
      @Jack_Callcott_AU 3 роки тому

      A very interesting observation!

    • @Svend9951
      @Svend9951 11 місяців тому

      If I'm not mistaken, this means that any sequence of binary digits produces a unique equivalence class, and since there are uncoutably many sequences of binary digits, there are also uncountably many equivalence classes. Therefore, we can actually find a bijection between the real numbers and the set of equivalence classes, which in turn means that we can find a bijection between the set of all real functions and the set of all real functions satisfying f(2x)=f(x), which seems crazy. Correct me if I'm wrong!

  • @Silent_Death
    @Silent_Death 11 місяців тому +1

    f(2x) = f(x)
    Assume that f(x + y) = ( f(x) + f(y) )/2
    f(x+x) = ( f(x) + f(x) )/2 -> f(2x) = f(x)
    f(x) = f(x + 0) = ( f(x) + f(0) ) /2
    2f(x) - f(x) = f(0)
    f(x) = f(0)
    since f(0) is a constant therefore f(x) = c, c € R

  • @Charles_Reid
    @Charles_Reid 3 роки тому +14

    You can also do some stuff with a linear combination of sines and cosines where the argument for both the sine and the cosine is (2*pi*log_2(x)). It works pretty nicely for x greater than 0.

    • @yassine-sa
      @yassine-sa 11 місяців тому +1

      Oh that's pretty cool!

    • @darrenstensland5301
      @darrenstensland5301 10 місяців тому

      That's what I got, too. It works for negatives as well if you change x to |x|. I didn't simplify by changing to base-2. That took me a while to figure out what you did there. Changing the base was more interesting than the video!

  • @romanburtnyk
    @romanburtnyk 3 роки тому +4

    Sorry, watched without sound, will do with tomorrow. Curious to check other versions than continuous on R. Found next solution.
    Lets do replacement. x=2^t. So we have
    f(t)=f(t+1). In this case any periodic function with period 1 satisfied our condition. F.e. f(t) = {t}. Or better to put sin(2pi*t). Moving back, t=ln2(x).
    sin(2pi*ln2(x)). {ln2(x)}. Basically any periodic P(x) = P(x+1) have solution P(ln2(x)).But only on R+/0

  • @aks9545
    @aks9545 3 роки тому +22

    9:12 that's me every time I want to talk about a really precise theorem 😂

    • @keinKlarname
      @keinKlarname 3 роки тому

      @AKS I was in such a situation many years back, but I was not so souvereign like the Dr here...

  • @martind2520
    @martind2520 3 роки тому +12

    f(x) = cos(2pi(log_2(x)) is an example of a non-trivial function that satisfies this and is continuous on all positive numbers.

    • @drpeyam
      @drpeyam  3 роки тому +4

      Only defined on x>0 though

    • @gastonsolaril.237
      @gastonsolaril.237 2 роки тому +4

      @@drpeyam "f(x) = cos(2π log₂ |x|)" ? heh...

    • @shreyashkumar3196
      @shreyashkumar3196 11 місяців тому

      Still undefined on x = 0​@@gastonsolaril.237

    • @creativenametxt2960
      @creativenametxt2960 11 місяців тому

      seems to break at x=0

    • @ChannelMath
      @ChannelMath 11 місяців тому

      nice! I also think f(any rational) = 1, f(any irrational) = 2 (and similar equivalence classes like algebraic/transcendental and infinitely more) is a discontinuous one that he missed

  • @joaquingutierrez3072
    @joaquingutierrez3072 3 роки тому +5

    Nice video!! There is a nice way of stating the general case:
    Let p: R -----> R/~
    Be the natural projection function (where ~ is the equivalent relation described in the video).
    Then a function satisfies f(x) = f(2x) iff f = h o p
    Where h is any function
    h: R/~ -----> R

    • @samsonblack
      @samsonblack 3 роки тому +1

      Absolutely. I like to think of this universal property as the analog for the category of sets what the "Fundamental Homomorphism Theorem" is for the category of groups.
      www.wikiwand.com/en/Fundamental_theorem_on_homomorphisms

  • @UrViridescentLeaf
    @UrViridescentLeaf 3 роки тому +6

    Dr. Peyam: Uses Red Pen.
    Me: "Wait, that's illegal! You're not bprp..."

    • @Bobbel888
      @Bobbel888 3 роки тому

      2+2=4 is also forbidden ;)

  • @Apollorion
    @Apollorion 3 роки тому +5

    How well would f(x)=g(ln(x) mod ln(2)) fullfill the f(x)=f(2x) condition for x>0 ?
    edit:
    - g(x) can be an arbitrary function defined at least for some values 0

    • @justinbagci5656
      @justinbagci5656 3 роки тому +2

      i like this idea. if you plug lnx/ln2 - floor(lnx/ln2) into wolframalpha it will actually draw a graph of the function when g(x) = x and it does seem to fullfill f(x)=f(2x)

    • @Apollorion
      @Apollorion 3 роки тому

      @@justinbagci5656 Well, for g(x)=sin(2pi*x/ln(2)) the function f(x) becomes effectively the same as the one proposed (in the comment) by Smiley1000.

  • @tomcat1184
    @tomcat1184 3 роки тому +2

    I'm a common Indian man , I see my country's flag in the thumbnail , I click it

  • @brunoamezcua3112
    @brunoamezcua3112 3 роки тому +10

    cool! i love this idea of a video finding all functions that fullfill some property! keep it up

  • @佐々木四季-o6t
    @佐々木四季-o6t 3 роки тому +17

    日本人でおすすめにでてきた同士はいますか?笑

    • @suou7938
      @suou7938 3 роки тому +2

      いるで。でも元々英語の数学や物理の解説見てたから、ノーカンかも。

    • @佐々木四季-o6t
      @佐々木四季-o6t 3 роки тому

      @@suou7938 すごい!英語のもの見てるんですね!僕は大雑把な理解しか出来ませんでした…笑

  • @mikeburns6603
    @mikeburns6603 3 роки тому +3

    For the continuous case, you can also just take the derivative using the chen lu and show that f'(x)=0 everywhere, so it's a constant.

    • @drpeyam
      @drpeyam  3 роки тому +3

      Care to elaborate? :) Also continuous doesn’t imply differentiable

    • @mikeburns6603
      @mikeburns6603 3 роки тому

      @@drpeyam Ah yes, you're correct. I was assuming that the function was differentiable. If it were, then you end up with 2f' = f', and therefore f' must be zero.

    • @Apollorion
      @Apollorion 3 роки тому +1

      @@mikeburns6603 Strange.. that seems to be correct, but the function proposed by Smiley1000, i.e. sin(2pi*log_2(x)), seems to be differentiable as well as fulfilling the requisite f(x)=f(2x) but it is not constant:
      1) f(2x)=sin(2pi*log_2(2x))=
      sin(2pi(1+log_2(x)))=
      sin(2pi+2pi*log_2(x))=
      sin(2pi*log_2(x))=f(x)
      2) it's derivative:cos(2pi*log_2(x))*2pi/(xln(2))
      is only 0 for x=2^((2n+1)/4) n being any integer, because cos(y)=0 implies y=pi*(2n+1)/2
      So what's going on here?
      I verified what you stated, but did not come to the same conclusion.
      The derivative of f(x)=f(2x) is f'(x)=2f'(2x) and that latter equation does not imply f'(x)=0 and Smiley1000's function does fulfill it:
      i.e.
      cos(2pi*log_2(x))*2pi/(xlnl(2))=2*cos(2pi*log_2(2x))*2pi/(2xln(2))=(2/2)*cos(2pi+2pi*log_2(x))*2pi/(xln(2))

    • @mikeburns6603
      @mikeburns6603 3 роки тому +1

      @@Apollorion That function is not differentiable at zero (or even defined) but everywhere else is good.

    • @Apollorion
      @Apollorion 3 роки тому

      @@mikeburns6603 I know that, it also isn't defined for negative x. But where is it stated that the domain of f needs to be R, or that it needs to be continuous at x=0?

  • @fireemblem2770
    @fireemblem2770 3 роки тому +10

    Do you say "All right, thanks for watching" when you start your actual in-person classes?!

    • @drpeyam
      @drpeyam  3 роки тому +19

      Yeah I actually say “Thanks for coming”

  • @athiba5945
    @athiba5945 3 роки тому +1

    I love how excited you are while explaining

  • @ZantierTasa
    @ZantierTasa 11 місяців тому +2

    Cool, I solved the non-continuous case, but not formally.
    Assign any outputs you want for all x values in the ranges: (-2,-1], 0, [1,2). Then all the remaining x values have determined outputs.

  • @franciszekjurasz5820
    @franciszekjurasz5820 3 роки тому +2

    So how about f(x) = sin(2π log₂x) ? This can be further extended to any periodic function:
    f(x) = f(ax), f(x) = g(P logₐx) where g(x) is periodic and P is its period.

    • @drpeyam
      @drpeyam  3 роки тому +1

      Not defined on R

    • @aliskprado
      @aliskprado Рік тому

      @@drpeyam Easily extended to R though. Just use absolute value of x and use whatever value you want at 0. With the added benefit that with this method you can produce functions with the desired property that can be easily computed, given a computable periodic function g.

  • @samueldeandrade8535
    @samueldeandrade8535 10 місяців тому

    7:57 a wild thought appears!!! Hahaha. Loved it. That's genuine.

  • @rooksman64
    @rooksman64 11 місяців тому +1

    take a shot every time he says “however”

  • @CHector1997
    @CHector1997 3 роки тому +2

    You also could change the condition of continuity for the existence of lim f(x) when x tends to +-inf. You obtain something different :)

  • @lazbn90
    @lazbn90 11 місяців тому

    The real line quotient the equivalence relation x ~ 2^N x for N integer, as a set is just [-1, -1/2) U {0} U (1/2, 1]. As a topological space, however, one needs to notice that R/~ must be connected, and in the quotient, the class of {0} is an accumulation point of all other classes. It should not be hard to formally prove that R/~ is homeomorphic to a compact interval [0,1], and the set of all such functions is in one-one correspondence with functions [0,1] ---> R.

  • @terrible1237
    @terrible1237 11 місяців тому

    I think another way to show the continuous case is that f(x) = f(2x) implies that every point (x,y) = (0.5x,y) so x = 0.5x which means x = 0 and so f(x) = f(2x) = f(0)
    The discontinuous case can also be shown by saying that for every point (x,y) there exists a point (1/2x,y) (which sounds very similar to the previous case) so x has to be 2^m in order for every x to be divisible by 2 leading to f(x) being 1 for x = 2^m for all m in Z and 0 o/w, you could also generalise this to f(x) is a if x = b/2^m and 0 o/w for all a, b and m in Z

  • @ompatil7613
    @ompatil7613 11 місяців тому

    You could also use the epsilon delta definition of continuity to say f must be a constant function f is continuous at 0
    let f(0) = c
    let f(k) =/= c for some k
    then, for ε < |f(k) - c|
    for any δ we choose
    there exists λ=x/2^n < δ
    meaning that there will always be an intrusive bit,
    f(x) is not constant f(x) is not continuous at x=0
    (the converse is left as an exercise to the reader)
    However, if f(x) is not required to be continuous at x=0, then f(x) = g(log_2 |x|) for any continuous periodic function g(x) with period 1 (take g(x) = sin(2pi x) for example)
    This is because at 0, there will always be an intrusive bit which is arbitarily close to 0, but for any other value, you can always filter those out by choosing a sufficiently small interval.
    As a final statement, if f(x) does not have to be continuous at x=0, it can be defined piecewisely for -ve and +ve numbers
    f(x) = g(log_2 x) if x>0
    h(log_2 -x) if x

  • @zprmscorner1769
    @zprmscorner1769 3 роки тому +2

    For the general solution, if we give a different value for each equivalence class, what kind of image can we obtain by those functions ?

    • @beatoriche7301
      @beatoriche7301 3 роки тому +2

      Well, the set of the equivalence classes introduced in the video is certainly uncountably infinite, for if it were countable, the real numbers would be a countable union of countable sets (and therefore a countable set by Cantor's diagonal proof). It is clear that its cardinality is less than or equal to the cardinality of the reals, and if we choose to accept CH, this implies that there are exactly as many equivalence classes as there are real numbers. Of course, picking any bijection between the two sets allows us to define a function satisfying the functional equation f(2x) = f(x) with f[R] = R. I don't know how this would work out without CH, though ...

    • @smiley_1000
      @smiley_1000 3 роки тому +1

      ​@@beatoriche7301 Of course the set of equivalence classes has the same cardinality as R as it should be simple to construct a bijection between (-2,-1] u {0} u [1,2) and R

    • @beatoriche7301
      @beatoriche7301 3 роки тому +1

      @@smiley_1000 You're right! That's way more elegant than what I came up with.

  • @pizza8725
    @pizza8725 10 місяців тому +1

    f(x)=a
    Where a is a constant
    It can't have any more answers

    • @drpeyam
      @drpeyam  10 місяців тому

      Yes it can!

  • @Dharmarajan-ct5ld
    @Dharmarajan-ct5ld 3 роки тому +1

    In beginning, is it not enough to assume f is continuous at 0 ?

  • @jonasdaverio9369
    @jonasdaverio9369 3 роки тому +6

    Is there any reason for the flag-like colors in the thumbnail? I couldn't find a plausible explanation

    • @helloitsme7553
      @helloitsme7553 3 роки тому +2

      maybe this was a question asked in an indian contest?

    • @drpeyam
      @drpeyam  3 роки тому +5

      No just random

  • @empiricsnake5379
    @empiricsnake5379 11 місяців тому

    In fact we didn't need to talk about the continuous case at all, we could have just jumped straight into the "most general case" which includes the continuous case. However the solution to the "most general case", doesn't give us any insight into what happens with interesting constraints like continuity, where f(x) = constant: we had to reason this from scratch. So the question is, are there any other interesting constraints apart from continuity, that give another interesting class of solutions, that are not obvious from the "most general case" solution?

  • @Bobbel888
    @Bobbel888 3 роки тому

    8:03 You think about extending positive equivalence classes to negative numbers?

  • @route66math77
    @route66math77 3 роки тому +2

    Hi Dr. Peyman! Out of curiosity for those watching, is there a particular course where math majors could encounter an abundance of functional equations outside of ODEs or PDEs?

  • @FishSticker
    @FishSticker 11 місяців тому

    Sin(log(x)), you just have to choose the base such that doubling x results in adding 2pi (not continuous though)

  • @antoinepoupard2418
    @antoinepoupard2418 11 місяців тому

    Hello. At 2:23 I thing it should be written x->0 instead of N->0 line 2

  • @PaulFisher
    @PaulFisher 3 роки тому +2

    The general formulation I came up with is that your f can be any function that can be defined in terms of some g as below:
    f(x) = g(log2(x) - floor(log2(x)))
    or, if you want to use “frac” to mean “the fractional part”, it is more concisely
    f(x) = g(frac(log2(x)))
    Taking the logarithm makes the problem equivalent to g(y) = g(y+1), where y = log2(x). Then, the frac function transforms y into a period-1 sawtooth wave in the logarithmic space. Thus, we can plug the result into any function we want, and that function gets to map [0,1) to anything at all, with no restrictions.

    • @tarsofelix4414
      @tarsofelix4414 3 роки тому

      You can include negative numbers with a small tweak:
      f(x) = g(frac(log2(|x|)))
      This function will be defined for all real numbers except 0.

    • @PaulFisher
      @PaulFisher 3 роки тому

      @@tarsofelix4414 Since (for positive x) log2(-x) = iπ/log(2) + log2(x), my original proposal already works for negative numbers! However, you did give me the idea to make it more general. Since the real part of a logarithm is the only thing that changes when you multiply by two (i.e., double the distance away from the origin, or the absolute value), we really only need to take the fractional part of the real component of the logarithm, and can leave the imaginary part alone.
      So if we use a function reFrac(x) = frac(re(x)) + im(x)×i (where re and im extract the real and imaginary components, respectively), this function will do just that.
      The final result is:
      f(x) = g(reFrac(log2(x)))
      If you put "plot frac(re(log2(x+yi))) + im(log2(x+yi))×i" into Wolfram Alpha (or your graphing system of choice) you can see how this most general solution turns out!

  • @tmlen845
    @tmlen845 Рік тому

    Not sure if this proves f(x)=f(0) for the continous case, because it only says that the limit as N->inf is f(0) for each starting f(x), but that limit never gets reached

    • @SonVu-rw9hh
      @SonVu-rw9hh 11 місяців тому

      Nope the values of sequence are all equal to each other, since it is not increases or decreases then the limit it approaches must equal to all those values

  • @ВасилийДрагунов-н8т
    @ВасилийДрагунов-н8т 11 місяців тому +1

    A*sin(2pi*log_2|x|)+B*cos(2pi*log_2|x|) works for any non-zero x

  • @mstanner
    @mstanner 2 роки тому +1

    A nice nonconstant but continous example is sin(2pi *log2(x)) i believe.

  • @snillie
    @snillie 2 роки тому

    a function that satisfies this equation is ‘f(x) = the note perceived by humans when listening to an x Hz tone’ =P
    this is because multiplying the frequency of a sound wave by 2 shifts it up by one octave, which we perceive as the same note. similarly, dividing by 2 shifts it down an octave
    for example, 440 Hz is defined to be an A note, and because of this property, an 880 Hz tone also sounds like an A. similarly, so does 220 Hz. and we get the following equivalence class of all frequencies that sound like an A note, {…, 55, 110, 220, 440, 880, 1760, 3520, …} :D

  • @nixheb
    @nixheb 3 роки тому +1

    I'm sorry but I don't undertand what property (theorem, justification....) permits to write the equation visible at 0:39 ? For me, it's litteraly coming out of nowhere... :D

    • @drpeyam
      @drpeyam  3 роки тому +1

      It’s just iteration. If f(x) = f(2x) for all x, then f(y) = f(2y) for all y and just let y = x/2

    • @nixheb
      @nixheb 3 роки тому +1

      @@drpeyam errrrr... if y = x /2, by taking f(y) = f(2y), shouldn't we have by substituion f(x/2) = f(2(x/2)) instead of f(x) = f(2(x/2)) ? I understand that it's the last part of the equation, but how then can this be equal to f(x), since we are talking about x/2 and not x ?

    • @drpeyam
      @drpeyam  3 роки тому +1

      f(x) = f(2(x/2)) is always true but f(2(x/2)) = f(x/2) is true because f(2*anything) = f(anything), that’s why we get f(x) = f(x/2)

    • @nixheb
      @nixheb 3 роки тому +1

      @@drpeyam Thank you for taking the time to respond ! ;)

  • @Mythologiga
    @Mythologiga 3 роки тому +1

    Amazing, elegant and to the point, I loved it !! Subscribed immediatly !

  • @nitrousoxide4970
    @nitrousoxide4970 3 роки тому +3

    I love your videos man! You’re very underrated.

    • @NihilistEmier
      @NihilistEmier 3 роки тому +1

      So is maths (unfortunately)

    • @azzteke
      @azzteke 3 роки тому +1

      By whom, please?

    • @drpeyam
      @drpeyam  3 роки тому +1

      Awwww thanks!!!

  • @frentz7
    @frentz7 2 роки тому

    seems like "all functions" should come with a clarification, all f : A --> B for what sets A, B

  • @maheshpatel7691
    @maheshpatel7691 3 роки тому +5

    Best example of f(x)=f(2x) is Signum function.

    • @smiley_1000
      @smiley_1000 3 роки тому +5

      That is particularly boring

    • @Wurfenkopf
      @Wurfenkopf 3 роки тому

      f=0 is even simpler

    • @smiley_1000
      @smiley_1000 3 роки тому

      @@Wurfenkopf but particularly uninteresting

  • @darrenstensland5301
    @darrenstensland5301 10 місяців тому

    y = 1 if x is rational, y = 0 if x is irrational. There are lots of answers if they don't have to be continuous. Trig/ln2 functions that everybody below found are well worth noting.

  • @ChannelMath
    @ChannelMath 11 місяців тому

    Are you sure you found all of them? what about something like f(any rational) = 1, f(any irrational) = 2.
    This is also a sort of equivalence class -based function (bc multiplication by 2 preserves rationality/irrationality), but it's not in your "most general case", I think

  • @retiredmeme2751
    @retiredmeme2751 3 роки тому

    i dont even know what kind of fields of math you post videos of but every video has such good explanations that I always end up learning something new

  • @toddtrimble1673
    @toddtrimble1673 3 роки тому

    Along exactly similar lines, if f is a periodic function and lim_{x --> infinity} f(x) exists as a number L, then f is constant with value L.

  • @samsonblack
    @samsonblack 3 роки тому +1

    Challenge: Consider the quotient topology induced by ℝ → ℝ/~ as well its restriction on subspaces. What familiar space is (0, ∞)/~ homeomorphic to? How about (−∞, 0)/~? What happens when you add in the origin (the only singleton equivalence class)? What famous (but trivial) topology does this space ℝ/~ have?

    • @rooksman64
      @rooksman64 11 місяців тому +1

      that’s too easy

    • @adayah2933
      @adayah2933 11 місяців тому

      ℝ/~ has weird topology, are you sure it's something famous?

  • @ianbo1
    @ianbo1 3 роки тому

    What about f(x)=A*x^(i*2*pi*k/ln2), with k = {0, 1, -1, 2, -2,...}, A is any real number? This function satisfies the condition in the complex space and it includes all the constant solutions you mentioned when k=0 by just varying A. You can verify that f(2x)=f(x) for all real x.

  • @comingshoon2717
    @comingshoon2717 3 роки тому +2

    gracias Doctor Peyam... me gustan estos videos de funciones de variable real y todas esas cosas! genial 👏

  • @BCQM_BCQM
    @BCQM_BCQM 3 роки тому +2

    Maybe f(x)=sin(2πln(abs(x))/ln2) is a solution

    • @smiley_1000
      @smiley_1000 3 роки тому +4

      I had the same idea, but your function is not defined for x = 0. But since 0*2 = 0, this should be easy to fix.

    • @BCQM_BCQM
      @BCQM_BCQM 3 роки тому +1

      @@smiley_1000 since the limit as x approaches 0 doesn't exist so it will never be continuous; then I decided not to define any f(0).

    • @smiley_1000
      @smiley_1000 3 роки тому +1

      @@BCQM_BCQM Dr. Peyam requires f to be continuous on R in his statement of the problem, so you will have to define f(0). A function can only be called continuous if it is defined everywhere, the limit is defined everywhere and both are equal everywhere.

  • @alexandersanchez9138
    @alexandersanchez9138 11 місяців тому

    The true most-general-case would be to find all functions, f, with f(2x)=f(x) where the domain is any (unital) ring-and no other restrictions!

  • @NStripleseven
    @NStripleseven 11 місяців тому

    Any function on the fractional part of log2(x) fits this definition, I believe.

  • @Wurfenkopf
    @Wurfenkopf 3 роки тому

    One question is left: how many are these equivalence classes?
    SPOILER:
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    This is quite trivial once you realize that the elements in the left-closed, right-open interval [1,2[ all belong to a different class. But still, it's interesting to notice.
    Also, there are 2^(2^aleph_0) functions solving that equation

  • @thomaspeck4537
    @thomaspeck4537 3 роки тому

    One interesting example is the function f(x)=sin(2 π ln(x)/ln(2)). In general, if g(x) is periodic with period ln(2), then f(x)=g(ln(x)) will fit this criterion.

    • @drpeyam
      @drpeyam  3 роки тому

      Definitely! Except your function is not defined on all of R

    • @thomaspeck4537
      @thomaspeck4537 3 роки тому

      @@drpeyam In order to define the function on R, you could use f(x)=g(ln|x|), and let f(0)=0.

    • @drpeyam
      @drpeyam  3 роки тому

      Yes so a particular instance of the general formula in the video :)

  • @wwu5606
    @wwu5606 3 роки тому

    If f is a continuous function on [0, inf] and f(2x) is less equal to f(x) for all x, does this imply f is deceasing?

  • @henrybeenh7076
    @henrybeenh7076 3 роки тому

    Thank god I can change the speed of youtube-movies to say 0,5 because I cannot think so fast... haha

  • @Leidl.Michael
    @Leidl.Michael 3 роки тому

    Choosing a representative out of every equivalence class for the general case? smells a lot like axiom of choice

    • @Leidl.Michael
      @Leidl.Michael 3 роки тому

      wait for every (nonzero) equivalence class [x] the set {|y| in [x] : |y|>1} has a minimum so i think the axiom of choice is not needed right?

  • @konradfischer9462
    @konradfischer9462 3 роки тому

    0:40 German outta nowhere? Is this some sort of running gag?

  • @fartoxedm5638
    @fartoxedm5638 11 місяців тому

    why can't we define continuous function on [1, 2) (such that derivative at 1 and 2 would be 0) so that it would be continuous on the whole interval [0, oo). isn't it?

  • @andrejgrebenc3235
    @andrejgrebenc3235 3 роки тому

    Why do you complicate. 2*x=x gives 0 and infinity as the solution.

  • @yamorip4018
    @yamorip4018 3 роки тому +1

    No cos(2pi*ln(x)/ln(2)) IS solution

    • @drpeyam
      @drpeyam  3 роки тому +1

      No, not defined on all of R

  • @alexatg1820
    @alexatg1820 3 роки тому +1

    I attempt to solve it using calculus, assuming f is double differentiable on R s.t. f(2x)=f(x),
    then 2f'(2x)=f'(x)
    => 2^k f'(2^k x)=...=2f'(2x)=f'(x)=f'(x/2)/2=f'(x/4)/4=...=f'(x/2^n)/2^n
    by continuity of f'(x), f'(x) = lim n->inf f'(x/2^n)/2^n=f'(0)*0=0
    =>f(x)= int f'(x) dx = 0+C=C where C is a constant

    • @drpeyam
      @drpeyam  3 роки тому

      But f is not differentiable

    • @drpeyam
      @drpeyam  3 роки тому

      Also the differentiation is unnecessary, the approach in the video is much simpler

  • @GingerWithEnvy
    @GingerWithEnvy 2 роки тому

    Would something like f(x)=sin(log(|x|)*2*pi/log(2)) work?

  • @32582657
    @32582657 11 місяців тому

    The function that relates frequency to the notes of the musical scale (as positions on a circle) is an example. (You can invert a logarithmic spiral and apply a sawtooth/mod function, so it is piecewise continuous.)

  • @flippert0
    @flippert0 11 місяців тому

    Gives me such David Cross vibes ("Mr. Show")

  • @RunYangH
    @RunYangH 11 місяців тому

    f(x) = the same constant for every prime number?

  • @seanfaherty
    @seanfaherty Рік тому

    I’m not smart but isn’t it 0, 1 and -1 ? And maybe infinity ?

  • @hanmi4735
    @hanmi4735 2 роки тому

    May I ask what is the name of this type of equation?

    • @drpeyam
      @drpeyam  2 роки тому

      I’d call it a dilation equation

  • @icew0lf98
    @icew0lf98 3 роки тому

    this would be a fun calculus assigment

  • @leojagumbay9158
    @leojagumbay9158 3 роки тому

    Dr. Peyam is like mathematician version of mehdi

  • @alexanderb5485
    @alexanderb5485 11 місяців тому

    Dirichlet function?

  • @ameerunbegum7525
    @ameerunbegum7525 3 роки тому +1

    Well I don't know any of these so i can't understand, can you please help me how i could find the conceptual lessons upon this.

    • @drpeyam
      @drpeyam  3 роки тому +1

      See the playlist

  • @ilyassshow4265
    @ilyassshow4265 3 роки тому

    You are amazing !

  • @federicorossi66
    @federicorossi66 3 роки тому

    What about f(x)=d/dx (ln(x))

  • @simonwillover4175
    @simonwillover4175 11 місяців тому

    Solution:
    f(x) = {the largest prime factor of x} works for all (integers) x > 1.

  • @KennethVernelen
    @KennethVernelen 3 роки тому

    What about cos(2*pi*k) = 1?
    sin(2*pi*k) = 0?

    • @drpeyam
      @drpeyam  3 роки тому +1

      No here x is any real number, not just an integer

  • @Leidl.Michael
    @Leidl.Michael 3 роки тому

    Okay also der trick mit der äquivalenzrelation für die allgemeine lösung funktioniert klarerweise für probleme der form f(c*x) =f(x) bzw f(x^a) =f(x) für geeignete a respektive c in R, sodass man eine Äquivalenzrelation bilden kann. Großartig

  • @AaronRotenberg
    @AaronRotenberg 3 роки тому +2

    I think we can generalize the first part of this video to: if X and Y are complete metric spaces, f : X → Y is continuous, g : X → X is a contraction mapping in the sense of the Banach fixed point theorem, and for all x we have f(g(x)) = f(x), then f is constant.
    The video has X = ℝ, Y = ℝ, and g(x) = x/2.

    • @drpeyam
      @drpeyam  3 роки тому +2

      Very nice observation, thank you!

  • @gojogaming7972
    @gojogaming7972 3 роки тому

    I loved your video ,by the way can u plz makr videos on laplace conversation or some tips on it ❤️

  • @jayminmistry2903
    @jayminmistry2903 3 роки тому

    What if the condition becomes f(x)=f(x+1) for all real numbers?

    • @drpeyam
      @drpeyam  3 роки тому

      But that’s just all the periodic functions

    • @Apollorion
      @Apollorion 3 роки тому

      @@drpeyam No, only the ones with period equal to 1/n, n any (positive) integer; e.g. all the periodic trigonometric functions do not fulfill that condition because their period is 2pi or pi.

  • @gabrielcarneiro6693
    @gabrielcarneiro6693 3 роки тому

    Beautiful one

  • @dmitrykatyshev9125
    @dmitrykatyshev9125 3 роки тому

    If functions equal, derivatives also equal.
    f’(x)=f’(2x)=2*f’(x)
    f’(x)=0
    f(x)=const

    • @Wurfenkopf
      @Wurfenkopf 3 роки тому

      Yeah, but no one told that f should be derivable

    • @dmitrykatyshev9125
      @dmitrykatyshev9125 3 роки тому

      @@Wurfenkopf f is not derivative. f’ is.
      If f’(x)==2*f’(x) it means f’(x)=0

    • @Wurfenkopf
      @Wurfenkopf 3 роки тому

      @@dmitrykatyshev9125
      DerivaBle. A function such that it HAS a derivative.
      It's not sufficient that the function is continuous to be derivable

  • @aryamankejriwal5959
    @aryamankejriwal5959 3 роки тому

    What about f(x) = sin(2*pi*lnx/ln2),
    Isn’t f(x)=f(2x) in this case for all x> 0?

    • @drpeyam
      @drpeyam  3 роки тому

      We need all x in R

    • @aryamankejriwal5959
      @aryamankejriwal5959 3 роки тому

      @@drpeyam oh yeah, right, and I guess even if you modded you still wouldn’t have a value for x=0...

  • @chokrimzoughi3330
    @chokrimzoughi3330 7 місяців тому

    F(x)= f(2x) … x = 2 x
    X-2x=0
    -x =0
    X=o F(X)= F0)

  • @awesokestephen3494
    @awesokestephen3494 3 роки тому

    Me: just do f(x)=f(2x)=constant :sunglasses:

  • @11cookeaw14
    @11cookeaw14 2 роки тому

    I got a+bcos(c+2dπln(x)/ln(2)), where d is an integer.
    y=mod(1,ln(x)/ln(2)) also works.
    y=f(mod(1,ln(x)/ln(2))) again.

  • @ultrio325
    @ultrio325 3 роки тому

    easy. Divide both side by f and we get x = 0
    *Algebruh 100*

  • @sundarbe
    @sundarbe 3 роки тому

    Wow, just intuitively I guessed f(x) = 0 will be the only function possible. But missed the continuous and non-continuous parts of the function.

  • @TheSemgold
    @TheSemgold 3 роки тому

    Сool. I really want to know more about equations these type.

  • @prateek1.9
    @prateek1.9 11 місяців тому

    i saw my flag's color and came real quick

  • @Murmilone
    @Murmilone Рік тому

    it should be continuous at least in x=0.

  • @tile_shirokuro
    @tile_shirokuro 3 роки тому

    写像fに何が入っても定数になるってこと?

  • @SolomonUcko
    @SolomonUcko 3 роки тому

    What about f(x)=1/2*f(2x)?

    • @drpeyam
      @drpeyam  3 роки тому

      That would be interesting! I did the case f(cx) = cf(x) in another video, but that’s different

    • @SolomonUcko
      @SolomonUcko 3 роки тому

      Oh wait, nvm. The video assumes that it works for *all* constants, not just one specific constant.