What Is A Fractal (and what are they good for)?

Поділитися
Вставка
  • Опубліковано 16 січ 2025

КОМЕНТАРІ • 565

  • @casperado666
    @casperado666 9 років тому +780

    "Infinite perimeter but finite area"
    Mind blown

    • @MH.CLundy-Maurer
      @MH.CLundy-Maurer 8 років тому +21

      I'm an 8th grader trying to learn scientific and mathematical questions and problems :(

    • @giocodecorner
      @giocodecorner 7 років тому +19

      I think in this case both perimeter and area are infinite but bounded, hence not finite because it cannot be measured..

    • @Something_Disgusting
      @Something_Disgusting 6 років тому +3

      Gabriel's cake has finite mass but infinite volume...

    • @michaelwalters4749
      @michaelwalters4749 6 років тому +30

      @@throwaway3460 whata dick. I "Calculus bruh" do you even "respect bruh? " there's a way to teach without being an ass.

    • @giocodecorner
      @giocodecorner 6 років тому +1

      @@throwaway3460 ahaha thanks for the explanation

  • @chrismcguirk4031
    @chrismcguirk4031 7 років тому +362

    This is like adding 1/10th to the previous number like 1+0.1+0.01+0.001 and never making 2

    • @RetroBackslash
      @RetroBackslash 7 років тому +33

      Thank you, that actually helped it make sense!

    • @steffen5121
      @steffen5121 6 років тому +18

      This maybe applies to the area of a Koch snowflake. But the perimeter actually diverges. Like the harmonic series: 1/2+1/3+1/4...=infinity. It's easy. After zero steps the Koch snowflake equals an equilateral triangle with perimeter=3. After one step perimeter=3*4/3=4. After two steps=3*16/9=5,333... And after n steps 3*4^n/3^n. So because 4^n diverges faster than 3^n it means that the expression 4^n/3^n also diverges and thus the perimeter of the Koch snowflake does also...

    • @rick2267
      @rick2267 6 років тому +7

      Like an Asymptote?

    • @andyfung7878
      @andyfung7878 6 років тому

      thx

    • @palmtop_studios
      @palmtop_studios 5 років тому

      h

  • @richardyoung5429
    @richardyoung5429 9 років тому +312

    You deliver a clear and understandable message. Nice job!

  • @leomasciale5127
    @leomasciale5127 2 роки тому +27

    A short video, but with large amounts of clear precise information on the subject. Extremely well done.

  • @sonofgodsdad3227
    @sonofgodsdad3227 5 років тому +632

    Everything is made of math.
    Acid taught me that.

    • @pablolongobardi7240
      @pablolongobardi7240 5 років тому +34

      acid makes you seek fractals for some reason...

    • @besserwisser4055
      @besserwisser4055 5 років тому +10

      It's more likely to be the brain itself

    • @gyros69420
      @gyros69420 5 років тому +9

      @@besserwisser4055 Breaks down reality/the simulation

    • @besserwisser4055
      @besserwisser4055 5 років тому +8

      not this bullshit again..

    • @besserwisser4055
      @besserwisser4055 5 років тому +15

      why would something that is part of simulation, when consumed, disrupt the simulation?

  • @drikast
    @drikast 8 років тому +143

    Well organized, informative and straight to the point. Thanks MIT and Yuliya.

  • @Moepowerplant
    @Moepowerplant 6 років тому +255

    Enough love triangles! Let's have a LOVE FRACTAL!

  • @Logjam5
    @Logjam5 9 років тому +235

    Listening to smart people is difficult for a simpleton.

    • @metalwheelz
      @metalwheelz 8 років тому +60

      Don't let us fool you. We know way less than we want you to think we know. Every answer brings many more questions - which continues on indefinitely ...just like fractals. So remember: no one knows all the answers; even if we try to sound like we do.

    • @daraiekana2688
      @daraiekana2688 8 років тому +22

      +metalwheelz your my favourite kind of person

    • @stewartsaurus5796
      @stewartsaurus5796 8 років тому +4

      Dara the-opinionated-jerk they're are my kind of favorite kind of person too.

    • @Krazycutiegurlxxx
      @Krazycutiegurlxxx 7 років тому +15

      It gets worse. I'm a simpleton even in spite of the fact that i understand fractals. You could say that my stupidity is a little like a fractal, being both infinite and contained.

    • @jakestephano3145
      @jakestephano3145 7 років тому +1

      You must all be " highly advanced intellectual individuals" and you are ahead of all humanity..jk you all aren't important and nobody knows any of you, you are nothing in the scheme of the universe and have no talents so you try to convince yourself that you are "smart" to make you forget the fact that nothing you do is important and nothing you do will ever matter

  • @KILLERSMITH111
    @KILLERSMITH111 3 роки тому +4

    Very very very underrated video... This is a complex study involving years of research, yet communicated in a perfect, simple as well as interesting way...

  • @TarePandaHelp
    @TarePandaHelp 5 років тому +68

    Im tripping on mushrooms right now and my mind is blown. Its so beautiful.

  • @Jamie-my7lb
    @Jamie-my7lb 8 років тому +18

    1:18 the perimeter is unbounded doesn't follow from the equation shown, which doesn't account for decreasing side length. The math still works out if you write out the full equation:
    lim_n->inf ( 3 * 4^n / 3^n )
    = lim_n->inf ( 3 * (4/3)^n )
    = inf
    Nitpicky but needed if you want to do the same thing to show finite area.

    • @chronicsnail6675
      @chronicsnail6675 5 років тому

      shut up nerd

    • @amsyarothman4312
      @amsyarothman4312 5 років тому

      @@chronicsnail6675 wtf you don't even have an idea about this lol

    • @garydegeorge5965
      @garydegeorge5965 4 роки тому

      Yes the limit of the sides >0. but the number of the sides approaches infinity. The key is that the sides approach infinity faster than the side length approaches zero. The perimeter increases by a factor of 6 with each iteration. Therefore the perimeter becomes infinite.

  • @tiffanyzyp6639
    @tiffanyzyp6639 6 років тому +17

    Wow wow wo ! You are making this stuff understandable which seemed so beyond my reach. Thank you for the great explanation!

  • @The.Pickle
    @The.Pickle 2 роки тому +2

    First time ever hearing about fractals and the statement "infinite perimeter but a finite area" has broken my brain !
    Can someone think of an explanation that a dummy like me would understand?
    Also, 3:49 if you like science and comedy check out the British satire show "Look Around You," it pokes fun at the educational science videos we used to get in the 70's/80's, it's really weird and funny.

    • @spreadjoy1477
      @spreadjoy1477 4 місяці тому

      I can. Think of measuring a coastline. If you measure it in a broad map of the united states it will be a certain length based on the scale. But if you zoom in the scale, there are more fine details of the coastline that wouldn't appear in the less zoomed out scale, thus adding to the length of the coastline. Basically the more you zoom into the coastline, the more length it has growing to infinity as you zoom in. This is why coastlines and rivers have variable lengths according to the zoom, and why its impossible to truly measure the lengths of these objects.

  • @vexcarius7100
    @vexcarius7100 5 років тому +145

    Humans are like fractals, we occupy a finite area, yet we have infinite potentials inside.

  • @RecruitingMaven
    @RecruitingMaven 7 років тому +8

    Thanks for delivering such a clear and concise explanation of fractals. Well done!

  • @spade4acer
    @spade4acer 7 років тому +50

    If fractals have infinite perimiter, are these so-called "fractal antennas" only objects that *resemble* fractals?

    • @cookiedoughl_l
      @cookiedoughl_l 7 років тому +24

      I think so. it wouldn't be physically possible to have a shape that goes on forever in the real world.

    • @Darqoni
      @Darqoni 6 років тому +4

      @@cookiedoughl_l _man made that is_

    • @cookiedoughl_l
      @cookiedoughl_l 6 років тому +9

      @darqoni no i mean in general. there isnt infinite matter so nothing can constantly go forever

    • @dudel39
      @dudel39 6 років тому +5

      @@cookiedoughl_l were just talking surface area here, has nothing to do with the amount of matter, the matter stays the same while just the surface area increases. Everywhere we look infities are around us.

    • @BDF30
      @BDF30 6 років тому +1

      yes....

  • @mddell58
    @mddell58 5 років тому +8

    *Love the fact that I'm able to easily understand every word you spoke. Thank you. I really enjoyed the way you laid all those facts out! I'm looking forward to seeing you again.* 👍😃👍😃👍😃👍😃👍😃👍😃👍

  • @samarthraizada
    @samarthraizada 8 років тому +4

    That helped straighten things out. Thank you Yuliya. I was kinda confused on the iterations in Jurassic Park, but you explained it so simply.

  • @pierangelabarbanti7695
    @pierangelabarbanti7695 9 років тому +6

    Thank you, Yuliya, and thank you MIT! this was great!!!!!!!!!!!!!

  • @ramjet4025
    @ramjet4025 3 роки тому +1

    Julia, This was the best video I've ever seen on Antennas and was exactly what I was looking for.

  • @halknowles1791
    @halknowles1791 8 років тому +2

    Fantastic explanation in an engaging video. Thanks Yuliya!

  • @sadeceyoutube2925
    @sadeceyoutube2925 Рік тому +1

    Thanks for explain me this loop how was working.

  • @_valles3438
    @_valles3438 7 років тому +5

    Thank you for making this video. It's crystal clear!!!

  • @karedlavaishnavi2118
    @karedlavaishnavi2118 6 років тому +1

    you are so clear you've blown my mind into fractals

  • @emilyanncarman
    @emilyanncarman 6 років тому +5

    Kudos for this video! You actually helped me understand fractals! After watching 4-5 other videos. 👏👏

  • @benjhanssen31
    @benjhanssen31 2 роки тому +1

    I have trouble understanding this on my textbook. Thank you for a concise content!

  • @victoryfirst2878
    @victoryfirst2878 10 місяців тому +1

    What would be the best whiskers pattern for a Channel Master TV antenna Yulia ?? The CM antenna has whiskers that are V-shaped like when you give the peace sign with your fingers. I am using the antenna to receive VHF-UHF signals for free to the air TV reception. Thanks

  • @tmkim
    @tmkim 3 роки тому +1

    Nice work Young one!!! Beautifully done! I learned something today!

  • @marlonlyn2719
    @marlonlyn2719 3 роки тому +1

    This is awesome. Thank you for the video!

  • @jeremytorres1715
    @jeremytorres1715 9 місяців тому

    This is one of the best explanations of fractals.

  • @romuloabarca8150
    @romuloabarca8150 10 місяців тому

    Muy buen documental sobre los fractales...gracias..
    Saludos
    👍✌️✌️

  • @boorayin2773
    @boorayin2773 6 років тому +4

    Thanks for your interesting explanation. After watching and doing some additional reading, I'm still not sure about my original question: is "fractal cauliflower" really a fractal or is it based on the golden ratio? Or is it an example of the Fibonacci sequence?

    • @user-ox4ii2bw6x
      @user-ox4ii2bw6x 5 років тому +1

      Yes, all plant life uses the golden ratio. Its explanation is quite apparent. And yes, they either use fibonacci or lucas numbers (sequence similar to fibbonaci)

  • @hopesouthstar4304
    @hopesouthstar4304 Рік тому

    Thank you Julia❤

  • @AlisonBryen
    @AlisonBryen 6 років тому +1

    Nicely explained!

  • @VIRGONOMICS
    @VIRGONOMICS 2 роки тому

    Fantastic !!!! Well done !

  • @brokenbrain3523
    @brokenbrain3523 2 роки тому

    Thank you for the information

  • @johnmeye
    @johnmeye 4 роки тому

    Excellent presentation!!

  • @pappsco54
    @pappsco54 6 років тому +1

    Thank you.......I actually understood this ......best video on thes explanation of fractal

  • @ArshiMorshi
    @ArshiMorshi Рік тому

    Thank you for the video, very well explained 🙏🏻👏🏻

  • @jt8847
    @jt8847 6 років тому +38

    Education channels:
    I fear no man.
    But that thing
    *fractals*
    It scares me..

  • @MrRussianDollOfficial
    @MrRussianDollOfficial 7 років тому +2

    Amazing. Just the explanation for the purpose of fractals that I needed.

  • @kornbread5359
    @kornbread5359 4 роки тому +1

    3:22 what river is that? It seems too perfect to be real

  • @tantrika.exotica
    @tantrika.exotica 3 роки тому

    Thank you Dearest!!!! Love this❤❤❤

  • @nevidomyvitaliy
    @nevidomyvitaliy Рік тому

    just increasing number of sides doesn't make perimeter grow (or as Greek said: Achilles can't catch a turtle); you also need to show it's length increased, in this case it is, so result is still correct

  • @hiteshvaidya3331
    @hiteshvaidya3331 8 років тому +3

    very nice video. Is there in any classification in fractals? is it possible to see an image identify a fractal representation in that image?

  • @LanguageMatrix
    @LanguageMatrix 7 років тому +45

    Language has infinite perimeter and finite area (fixed amount of words, infinite combinations).

    • @trisharoy5756
      @trisharoy5756 7 років тому

      Tony Marsh well said

    • @jenahdooley2540
      @jenahdooley2540 7 років тому +21

      I disagree. If you have finite words, you have a finite number of ways you can combine those words.

    • @coldfrostbyte5344
      @coldfrostbyte5344 6 років тому +1

      Jenah Dooley yes I thought that too the permutations are finite

    • @13thengineering33
      @13thengineering33 6 років тому +6

      +Jenah Dooley
      This would apply only if each word could be used a given amount of times
      Which is never the case (except for style exercises)

    • @jameswo4794
      @jameswo4794 6 років тому

      lol no

  • @blogguiajapao7732
    @blogguiajapao7732 9 років тому

    Great video and explanation! Thanks!

  • @UnTizioACaso1
    @UnTizioACaso1 2 роки тому

    Julia is the perfect name for a teacher who explains fractals

  • @CommandLineCowboy
    @CommandLineCowboy 5 років тому +1

    3:23 That's not a river system, its a mandelbrot fractal but coloured to look like a satellite picture.

  • @AnkushSharma-zv5hv
    @AnkushSharma-zv5hv 8 років тому +1

    extremely well explained

  • @granitetie
    @granitetie 4 місяці тому

    When you show up for a relatively simple yet elegant concept and then suddenly it dawns on you.

  • @asprywrites
    @asprywrites 2 роки тому

    I loved your video, thank you!

  • @samidelhi6150
    @samidelhi6150 5 років тому

    Really insightful

  • @thepessimist910
    @thepessimist910 6 років тому

    You did an awesome job

  • @wuukaa9079
    @wuukaa9079 3 роки тому

    Such a nice video!

  • @paramoreguate
    @paramoreguate 7 років тому

    Nice video, I loved every second of it :)

  • @mehersingh3010
    @mehersingh3010 4 роки тому +1

    0:55 you mentioned that we can draw a fractional dimension on the computer using mathematical equations. I request you to make a tutorial on this or could you just tell me what software to use to make the graphs? it would be great help.

  • @nonsenseprogram8857
    @nonsenseprogram8857 7 років тому

    got motivated by this beautiful recursion,still working on it

  • @adamross4295
    @adamross4295 7 років тому

    Great video. Bravo

  • @LoganKM76
    @LoganKM76 4 роки тому

    This presenter is excellent. Thanks for explaining it so well.

  • @amandamata
    @amandamata 9 років тому +5

    I loved your channel, is very good. I am Brazilian and I manage to understand what you say , because I love videos like this. Arranged a new fan

    • @richaellr
      @richaellr 8 років тому

      +Amanda Mata Uhul

  • @ryanreed4698
    @ryanreed4698 6 років тому +1

    The perimeter of the snowflake isn't infinite because it has infinite sides, rather it's because the sum of the sides is infinite. There are infinitely sided shapes that do not have infinite perimeter, the easiest to think of would be a circle. There is a way to mathematically think of a circle as being a polygon with n sides, but in a circle's case, when n is infinity, the sides would be infinitely small. And when you sum them it would sum to a finite number.

    • @user-ox4ii2bw6x
      @user-ox4ii2bw6x 5 років тому

      No, using basic geometry we can determine that it's area is infinite. It can be proved quite easily by basic patterns of the simplicity of it and the limit of the function that derives it, ending up to infinity.

    • @ChaosTheoryAstrology
      @ChaosTheoryAstrology 2 роки тому

      I’m thinking a Zeno’s paradox situation. But I’m not a mathematician.

  • @fcass
    @fcass 4 роки тому

    So awesome and true. Thank you.

  • @boatpizza2801
    @boatpizza2801 6 років тому

    Nice Educational Video!

  • @LucidDreamer54321
    @LucidDreamer54321 Рік тому +1

    As Edwin Starr would say, “I said, fractal, huh (good God, y'all). What is it good for? Absolutely nothing, just say it again.”

  • @scootermom1791
    @scootermom1791 3 роки тому +1

    Using the snowflake example, the snowflake's area wouldn't be finite if you didn't draw a circle around it. It would keep growing indefinitely wouldn't it? Not just the perimeter but the inside (area), too.

  • @آرمانکریمیان-ي7ث
    @آرمانکریمیان-ي7ث 4 роки тому

    well described.Keep going

  • @userdeleteddd4633
    @userdeleteddd4633 3 роки тому

    very helpful thank you!

  • @mariothane8754
    @mariothane8754 Рік тому

    I’m not surprised the fractal antenna came from somebody who wanted to work around their problems. It’s the same kind of logic that motivated a lot of inventions in the past.

  • @jancarlorossi7739
    @jancarlorossi7739 7 років тому +24

    Who came here from the oneoddsout

  • @Chrisymcmb
    @Chrisymcmb 8 років тому

    Awesome! :) Keep at it!

  • @coleslaw7662
    @coleslaw7662 5 місяців тому

    “infinite perimeter, but a finite area” is a great summary. just as humans are. 1:38

  • @NostalgicMem0ries
    @NostalgicMem0ries 6 років тому +3

    i get that we can zoom to molecules or even plank size, but there is no smaller thing than quarks, so how can we zoom even more? maybe if we talk about universe zooming out and it beying inifine i would get, but how can some fractal be zoomed in infinitely?

    • @mr.coffee6242
      @mr.coffee6242 6 років тому +2

      Its all theoretical, the equation states that the scale of replication is exponentially smaller each time: 0.1,0.01,0.001 and so on.... in theory you can do that forever without exiting your finite area. But thats only for a drawing in 2D. If that object had mass it couldnt exist. It would collapse on itself, kind of like a black hole. You cant keep cramming mass infinitely in a finite perimeter. Thats just not how the universe works. Inifinite math isnt really useful in everyday life

    • @NostalgicMem0ries
      @NostalgicMem0ries 6 років тому

      yeah thats what i thought, but some people thinks this explains infinity easily :D

  • @MrAnantjain
    @MrAnantjain 4 роки тому

    good one.. thanks

  • @scootermom1791
    @scootermom1791 6 місяців тому

    2:23 it seems like the fractal antenna would produce a bunch of garbled noise because it's picking up FM, AM, TV, and whatever other signals there are. If I were to play an FM radio station and an AM radio station together, I wouldn't hear either one clearly. 🤔

  • @PavanMehat12
    @PavanMehat12 6 років тому

    Wow this is an excellent video! :) You are going to be an excellent mathematician!

  • @thesunstartstoset
    @thesunstartstoset 9 років тому

    thanks a lot. that was well explained

  • @laur-unstagenameactuallyca1587
    @laur-unstagenameactuallyca1587 2 роки тому

    thanks for the vid

  • @naisookdeo4558
    @naisookdeo4558 6 років тому

    Great video i learned alot

  • @GoodMusicManiac999
    @GoodMusicManiac999 5 років тому

    Well done!

  • @joshzeidner5412
    @joshzeidner5412 5 років тому

    It's amazing how many ppl get fractals wrong. Self similar is neither a requirement nor determinant for fractals.

  • @bowgyu
    @bowgyu 3 роки тому +1

    I feel like I learnt more than anyone, though I literally know everything about this already

  • @hareecionelson5875
    @hareecionelson5875 4 роки тому

    Whoa, the Koch snowflake is pretty basic but then the video escalates to using fractals for signal antennae, very coooooool

  • @modernjedi9892
    @modernjedi9892 6 років тому

    Ive got a seminar on fractal tomorrow

  • @thebatperson7530
    @thebatperson7530 4 роки тому

    You’ve no idea how many times i had to back up this video.... i feel like an idiot

  • @shaynefinley4231
    @shaynefinley4231 4 роки тому

    Well I love fractals
    And u did a kickers job of describing them 👏 and two thumbs-up👍 up

  • @honestabe5153
    @honestabe5153 5 років тому

    Very cool video

  • @tarunganesh8124
    @tarunganesh8124 6 років тому

    thanks this video helped for my examination

  • @PantheraTK
    @PantheraTK 3 місяці тому

    How does it have finite area if the perimeter increases with each repetition?

  • @victoryfirst2878
    @victoryfirst2878 11 місяців тому +1

    When compared to a bow-tie antenna, how much more gain will the fractal be able to get ???

  • @ForeverMan
    @ForeverMan 9 років тому

    I find this channel awesome...

  • @TheSardineMan
    @TheSardineMan 3 роки тому

    Clean video, and like @casperado666 my mind is a little bit blown. I'll be sure to show off my new knowledge of fractals!

  • @MissNolver
    @MissNolver 6 років тому

    How old is this video? Very interesting

  • @mikedicewrites
    @mikedicewrites 4 роки тому +2

    2:41 When the math starts copying the 5th Dimension scene from Interstellar

  • @biggerthaninfinity7604
    @biggerthaninfinity7604 4 роки тому

    Can you figure out the asymptote of the reach limit of the fractal triangle?

  • @chelcee9929
    @chelcee9929 Рік тому

    1:45
    2:45
    3:45

  • @CamBMakinBread
    @CamBMakinBread 2 роки тому

    Interesting video

  • @michaeljhirz
    @michaeljhirz 10 місяців тому

    The iteration are what are infinite, when graphed they make forms that repeat and are consistent.

  • @dumdum6215
    @dumdum6215 7 років тому

    This is so trippyyyyyyy

  • @syntrexfpv1347
    @syntrexfpv1347 2 роки тому

    So is it like a tube, its the same diameter or circle but the pipe can go on for ever in length. thats what my mind thinks when you zoom in and loops the same thing we are pushing forward in space while the fractal is taking up like a square on the wall?