Least Squares vs Maximum Likelihood

Поділитися
Вставка
  • Опубліковано 3 сер 2024
  • In this video, we explore why the least squares method is closely related to the Gaussian distribution. Simply put, this happens because it assumes that the errors or residuals in the data follow a normal distribution with a mean on the regression line.
    References
    ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
    Multivariate Normal (Gaussian) Distribution Explained: • Multivariate Normal (G...
    Related Videos
    ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
    Why We Don't Use the Mean Squared Error (MSE) Loss in Classification: • Why We Don't Use the M...
    The Bessel's Correction: • Why We Divide by N-1 i...
    Gradient Boosting with Regression Trees Explained: • Gradient Boosting with...
    P-Values Explained: • P-Values Explained | P...
    Kabsch-Umeyama Algorithm: • Kabsch-Umeyama Algorit...
    Eigendecomposition Explained: • Eigendecomposition Exp...
    Contents
    ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
    00:00 - Intro
    00:38 - Linear Regression with Least Squares
    01:20 - Gaussian Distribution
    02:10 - Maximum Likelihood Demonstration
    03:23 - Final Thoughts
    04:33 - Outro
    Follow Me
    ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
    🐦 Twitter: @datamlistic / datamlistic
    📸 Instagram: @datamlistic / datamlistic
    📱 TikTok: @datamlistic / datamlistic
    Channel Support
    ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
    The best way to support the channel is to share the content. ;)
    If you'd like to also support the channel financially, donating the price of a coffee is always warmly welcomed! (completely optional and voluntary)
    ► Patreon: / datamlistic
    ► Bitcoin (BTC): 3C6Pkzyb5CjAUYrJxmpCaaNPVRgRVxxyTq
    ► Ethereum (ETH): 0x9Ac4eB94386C3e02b96599C05B7a8C71773c9281
    ► Cardano (ADA): addr1v95rfxlslfzkvd8sr3exkh7st4qmgj4ywf5zcaxgqgdyunsj5juw5
    ► Tether (USDT): 0xeC261d9b2EE4B6997a6a424067af165BAA4afE1a
    #svd #singularvaluedecomposition #eigenvectors #eigenvalues #linearalgebra

КОМЕНТАРІ • 33

  • @datamlistic
    @datamlistic  25 днів тому +2

    The equation explanation of the Normal Distribution can be found here: ua-cam.com/video/WCP98USBZ0w/v-deo.html

    • @blitzkringe
      @blitzkringe 23 дні тому +1

      I click on this link and it leads me to a video with a comment with this link, and I click on this link etc..., when do I stop?

  • @MiroslawHorbal
    @MiroslawHorbal 23 дні тому +19

    The maximum liklihood approach also lets you derive regularised regression. All you need to do is add a prior assumption on your parameters. For instance, if you assume your parameters come from a gaussian distribution with 0 mean and some fixed value for sigma, the MLE derives least squares with an L2 regularisation term.
    Its pretty cool

    • @datamlistic
      @datamlistic  22 дні тому

      Thanks for the insight! It sounds like a really interesting possible follow up video. :)

  • @elia0162
    @elia0162 20 днів тому +3

    I still remember when i thought i discovered this thing alone, and after i got a reality check that iit was already discovered

  • @placidesulfurik
    @placidesulfurik 18 днів тому +16

    Your math implies that the gaussian distributions should be vertical, not perpendicular to the linear regression line.

    • @gocomputing8529
      @gocomputing8529 17 днів тому +4

      I agree. This would implies that the noise is on the Y variable, while the X has no noise

    • @IoannisNousias
      @IoannisNousias 14 днів тому +1

      The visuals should have been concentric circles. The distributions are the likelihood of the hypothesis (θ) given the data, data here being y,x. It’s a 2D heatmap.

    • @placidesulfurik
      @placidesulfurik 14 днів тому

      @@IoannisNousias ah, fair enough

    • @IoannisNousias
      @IoannisNousias 14 днів тому

      @@placidesulfurik in fact, this is still a valid visualization, since it’s a reprojection to the linear model. He is depicting the expected trajectory, as explained by each datapoint.

  • @kevon217
    @kevon217 23 дні тому +4

    Great explanation of the intuition. Thanks!

  • @jafetriosduran
    @jafetriosduran 24 дні тому +1

    Una explicación breve y excelente de una duda que siempre tuve, muchas gracias

  • @the_nuwarrior
    @the_nuwarrior 14 днів тому

    Este video sirve para refrescar la memoria, excelente

  • @creeperXjacky
    @creeperXjacky 23 дні тому

    Great work !

  • @PplsChampion
    @PplsChampion 24 дні тому +1

    awesome explanation

  • @MikeWiest
    @MikeWiest 15 днів тому

    Cool, thank you!

    • @datamlistic
      @datamlistic  10 днів тому +1

      Thanks! Happy you liked the video!

  • @theresalwaysanotherway3996
    @theresalwaysanotherway3996 24 дні тому +1

    love the video, seems like a natural primer to move into GLMs

    • @datamlistic
      @datamlistic  22 дні тому +3

      Happy to hear you liked the explanation! I could create a new series on GLMs if enough people are interested in this subject.

  • @KingKaiWP
    @KingKaiWP 18 днів тому

    Subbed! You love to see it.

  • @markburton5318
    @markburton5318 21 день тому

    Given that the best estimate of a normal distribution is not normal, what would be the function to minimise? And what if the distribution is unknown? What would a non-parametric function to minimise?

  • @boredofeducation-sb6kr
    @boredofeducation-sb6kr 24 дні тому +2

    great video! but what's the intuition on why gaussian distribution as the natural distribution here?

    • @blitzkringe
      @blitzkringe 24 дні тому +3

      Central limit theorem. Natural random events are composed from many smaller events, and even if the distribution of individual events isn't Gaussian, their sum is.

    • @MiroslawHorbal
      @MiroslawHorbal 23 дні тому +1

      You can think of the model as:
      Y = mX + b + E
      Where E is an error term. A common assumption is that E is normally distributed around 0 with some unknown variance. Due to linearity, Y is distributed by a normal centered at mX + b
      You can derive other formula for regression by making different assumptions about the error distribution, but using a gaussian is most common.
      For example, you can derive least absolute deviation (where you mininize the absolute difference rather than the square difference) by assuming your error distribution is a Laplace distribution. This results in a regression that is more robust to outliers in the data
      In fact, you can derive many different forms of regression based on the assumptions on the distribution of the error terms.

    • @Eta_Carinae__
      @Eta_Carinae__ 20 днів тому

      @@MiroslawHorbalYes... like Laplace distributed residuals have their place in sparsity and all, but as to OPs question, the Gaussian makes certain theoretical results far easier. The proof of CLT is out there... it requires the use of highly unintuitive objects like moment generating functions, but at a very high level, the answer is that the diffusion kernel is a Gaussian, and is an eigenfunction of the Fourier transform... and there's a deep connection between the relationship between RVs and their probabilities, and functions and their Fourier transforms.

  • @et2124
    @et2124 22 дні тому +3

    According to the formula on 2:11, I don't see how the gaussian distributionas are perpendicular to the line, instead of just the x axis
    Therefore, I believe you made a mistake in the image on 2:09

  • @yaseral-saffar7695
    @yaseral-saffar7695 18 днів тому

    @3:14 is it really correct that st.dev does not depend on theta? I’m not sure as it depends on the square of the errors (y-y_hat) which depends on y_estimate which itself depends on theta.

  • @digguscience
    @digguscience 22 дні тому +1

    I have seen the concept of least squares in Artificial Neural Networks, The material is very important for learning ANN