Ingeniero, excelente contenido, estoy por escribirle una carta. Soy el Ing Monsalve, y daría algunas sugerencias para el cálculo algebraico. En la segunda integral (cálculo de sigma_y) se puede cambiar el orden de integración a dxdy ('x' como función de 'y'), resultando una integral más sencilla que contiene y*sqrt(1-y), que se resuelve con el cambio de variable w=1-y, y el valor es 16/15. Luego, sigma_y = 3/8 * 16/15 = 2/5. Asumo su correo está en su web, sino me comparte la dirección y le comparto mi solución a ver si lo considera para una reinterpretación del ejercicio. También soy informático, y estaba viendo el video sobre matriz de rigidez en octave, muy interesante.
me pidieron graficar dos lineas que se intersectan en un carton y encontrar el centro de gravedad por integrales y que pusiera un lapiz en el centro y se sostiene (si se mantiene en equilibrio ) ya la hice, este video me puede servir para logralo ??
Si y no. Conceptualmente es diferente pero en terminos prácticos es lo mismo. El centro de gravedad se refiere a la integral de masas. El centroide se refiere al centro de áreas.
Muchísimas gracias!!!!! Sus videos me ayudan muchísimo siempre
Gracias por hacermelo saber!! Ayuda a seguir creando contenido. ;) Saludos
Excelente vídeo. Gracias Ingeniero Marcelo Pardo.
Sludos Carlos
Esta fórmula es valida para toda función simetrica?? 😊
Ingeniero, excelente contenido, estoy por escribirle una carta. Soy el Ing Monsalve, y daría algunas sugerencias para el cálculo algebraico. En la segunda integral (cálculo de sigma_y) se puede cambiar el orden de integración a dxdy ('x' como función de 'y'), resultando una integral más sencilla que contiene y*sqrt(1-y), que se resuelve con el cambio de variable w=1-y, y el valor es 16/15. Luego, sigma_y = 3/8 * 16/15 = 2/5.
Asumo su correo está en su web, sino me comparte la dirección y le comparto mi solución a ver si lo considera para una reinterpretación del ejercicio.
También soy informático, y estaba viendo el video sobre matriz de rigidez en octave, muy interesante.
Excelente muuuuuchas gracias!
maravillosos video
Muchas gracias Tania!
Amigo que programa usaste para escribir ?
me pidieron graficar dos lineas que se intersectan en un carton y encontrar el centro de gravedad por integrales y que pusiera un lapiz en el centro y se sostiene (si se mantiene en equilibrio ) ya la hice, este video me puede servir para logralo ??
Buen vídeo, gracias. Solo quería recomendarte que utilice fracciones en lugar de decimales para evitar errores de cálculo.
Lo tomare en cuenta! Gracias por el feedback!
Una duda si te pide hallar el centro de gravedad es igual a hallar el centroide
Si y no. Conceptualmente es diferente pero en terminos prácticos es lo mismo. El centro de gravedad se refiere a la integral de masas. El centroide se refiere al centro de áreas.
@@marcelopardo Serían resultados diferentes entonces si la densidad de masa ("rho") es no constante.
Gracias gracias gracias
Jejeje! Me alegra mucho que te haya servido
y si mi profe no me dio el limite de la integral definida como puedo obtenerlo solo me dio y=x^2 , y=x
jejeje ya solo tenia que tabular para hacer la grafica y ver donde intersecta
Jeje exacto. Encuentras la intersección entre las dos curvas resolviendo el sistema de dos ecuaciones con dos incógnitas