Rotating Polygons on the Circle of Fifths | Surprising Results!

Поділитися
Вставка
  • Опубліковано 1 лют 2025

КОМЕНТАРІ • 1,3 тис.

  • @davidhensley76
    @davidhensley76 9 місяців тому +859

    Imagine having a wall of hand-cranked versions of this in a children's museum.

    • @fridtjofstein2993
      @fridtjofstein2993 9 місяців тому +104

      And the museum guard must be replaced every two days due to a nervous breakdown.

    • @UCXEO5L8xnaMJhtUsuNXhlmQ
      @UCXEO5L8xnaMJhtUsuNXhlmQ 9 місяців тому +31

      Imagine if it was a board with pegs and string where people could draw out a shape with the string and have it rotate

    • @ryanrevis827
      @ryanrevis827 9 місяців тому +15

      That sir is a brilliant idea.

    • @XB10001
      @XB10001 8 місяців тому +5

      That is avery good idea indeed!

    • @FirehorseCreative
      @FirehorseCreative 8 місяців тому

      My friend, people who think like you need to be running the world if we want a peaceful existence as opposed to the self destructive and wartorn existence we have.

  • @pikajade
    @pikajade 10 місяців тому +1342

    things i did not expect to learn from this:
    - rotating a pentagon around a circle of fifths will produce a chromatic scale
    - the first half of the gamecube intro is the circle of fourths but pitch shifted

    • @nobody08088
      @nobody08088 10 місяців тому +80

      I guess they're called fifths for a reason

    • @Mr.Nichan
      @Mr.Nichan 10 місяців тому +36

      I realized from the decagon that two circles of fifths a tritone apart (and going in the same direction) is the same as two chromatic scales (circles of half steps) a tritone apart (and going in the same direction as each other), because a tritone plus a half step is a perfect fifth and/or because a tritone minus a half step is a perfect fourth.

    • @Magst3r1
      @Magst3r1 10 місяців тому +15

      It's not, it's just the same instrument, not the same notes at all

    • @blackmage1276
      @blackmage1276 10 місяців тому +6

      Playing fourths like that is called plagal harmony

    • @Arycke
      @Arycke 9 місяців тому +10

      ​@@blackmage1276quartal harmony usually.

  • @mencken8
    @mencken8 9 місяців тому +1119

    I am not a musician. I have never understood “Circle of Fifths.” This has now raised my level of incomprehension by a power.

    • @hc3550
      @hc3550 9 місяців тому +11

      😂

    • @alexisfonjallaz7237
      @alexisfonjallaz7237 9 місяців тому +28

      Power greater or smaller than one?

    • @jasongodding6655
      @jasongodding6655 9 місяців тому +38

      Long story short: in music theory, the sequence of F - C - G - D - A - E - B (or its reverse) comes up a LOT. Each of those notes is an interval called a "perfect fifth" away from the next. So it's a sequence of fifths.
      Add in the five other notes common in Western music (the black notes on a piano) and you can make the sequence into a circle.
      It's handy for remembering things like which key has what sharps or flats, once you are used to it.

    • @anonymousanonymous-nt8ls
      @anonymousanonymous-nt8ls 8 місяців тому +12

      It's a tool that simplifies scales. You have to know what a scale is first. Go learn that.

    • @LordAikido
      @LordAikido 8 місяців тому +7

      Circle of fifths is just a fancy way of organizing every 5th note. It's a useful tool for musicians.

  • @QueenOfMud
    @QueenOfMud 10 місяців тому +1804

    Hendecagon: Oh wow, that's complex and interesting.
    Dodecagon: What the fuck.

    • @gustavgnoettgen
      @gustavgnoettgen 10 місяців тому +104

      Hendecagon is the eighties computer jingle.

    • @erock.steady
      @erock.steady 10 місяців тому +81

      Dodecagon is what a concussion sounds like. every time.

    • @nesquickyt
      @nesquickyt 10 місяців тому +42

      The Hendecagon isn't complex, it's just playing the circle of fifths

    • @QueenOfMud
      @QueenOfMud 10 місяців тому +13

      @@nesquickyt I understand.

    • @gustavgnoettgen
      @gustavgnoettgen 10 місяців тому +13

      @@nesquickytThat is arguably complex.

  • @cubefromblender
    @cubefromblender 10 місяців тому +1042

    The 11 polygon is actualy a fire ringtone

    • @chonkycat123
      @chonkycat123 10 місяців тому +121

      GameCube startup sound haha

    • @tHa1Rune
      @tHa1Rune 10 місяців тому +16

      Maybe an alarm, but not a ringtone

    • @iambadatcomingupwithcomeba2060
      @iambadatcomingupwithcomeba2060 10 місяців тому +4

      Same with the decagon

    • @doa_3
      @doa_3 9 місяців тому +9

      I find it funny, that it have 11 sides, but plays in 6/4

    • @TheTonyTitan
      @TheTonyTitan 9 місяців тому

      😂

  • @needamuffin
    @needamuffin 10 місяців тому +310

    The 11-gon actually illustrates the principle behind cycloidal drives, a type of transmission. The inner gear (the polygon) having just one fewer teeth than the outer (the circle of fifths) gives it this unique rotational mode that acts as a 11:1 gear reduction. In this case, that means it will play every note 11 times before the polygon rotates once.

    • @dannycameron
      @dannycameron 4 місяці тому +9

      Interesting 🤔 I hear the Nintendo Game Cube start jingle

    • @andy_thechicken
      @andy_thechicken Місяць тому +3

      H E N D E C A G O N

  • @mykelhawkmusic
    @mykelhawkmusic 9 місяців тому +86

    You gonna F around and open a portal to another dimension you keep this up!

    • @dereknolin5986
      @dereknolin5986 9 місяців тому +1

      en.wikipedia.org/wiki/The_Music_of_Erich_Zann

    • @ericleventhal
      @ericleventhal 9 місяців тому +2

      It’s the nonagon, don’t you know? Nonagon Infinity opens the door.

    • @nathansos8480
      @nathansos8480 Місяць тому

      hehehe, F

  • @trainzack
    @trainzack 10 місяців тому +614

    When used in this way, any regular polygon with A * B vertices (where A and B are positive integers) will behave the same as A copies of a regular polygon with B vertices. Because of this property, the really novel behavior will be on a the prime-numbered polygons.
    I wonder whether every sequence of intervals is possible?

    • @lemming7188
      @lemming7188 10 місяців тому +46

      Does this mean that theoretically any interval cycle could be represented by a Polygon with a vertex count that is Prime?

    • @lemming7188
      @lemming7188 10 місяців тому +39

      If true, could be a super interesting tool for classification. Would get extremely impractical though lol

    • @Mr.Nichan
      @Mr.Nichan 10 місяців тому

      @@lemming7188If you just mean in 12-EDO, the interval between any two adjacent (in time) chords must always be the same, due to a sort of time-independence symmetry (involves the geometric and interval symmetry of the circle as well), and, due to the symmetry of the polygons and the factors of 12 (1, 2, 3, 4, 6, and 12), the chords themselves must always be one of the following:
      (a) a single note, (b) two notes a tritone apart, (c) an augmented chord, (d), a fully diminished 7th chord, (e) a whole tone scale (as a chord), or (f) a chromatic scale (all 12 notes played at once)
      This is the same if you use the "circle of half-steps" instead of the circle of fifths, and is probably easier to understand for the "circle of half-steps".
      Anyway, this means the number of possible patterns so very limited I can list them:
      1) The pentagon's pattern from the video
      2) The heptagon's pattern (pentagon's pattern backwards)
      3) The hendecagon's pattern backwards (same just using an arrow point out from the center in one direction)
      4) The hendecagon's pattern
      5) The decagon's pattern
      6) The decagon's pattern backwards (should be the tetradecagon's pattern)
      7) The triangle's pattern
      8) The nonagon's pattern (the triangle's pattern backwards)
      9) The octagon's pattern (the square's pattern backwards)
      10) The square's pattern
      11) The hexagon's pattern
      12) the dodecagon's pattern
      (Note that the reason we only have backwards and forwards for each multi-note chord is because none of factors of 12 is relatively prime with anything less than it other than 1 and the factor minus 1.)
      Interesting how there are 12, just like there are 12 notes in the scale (in 12-EDO). I'm not sure if that's a general pattern though. By the way, to check if the similarity between the circle of fifths and circle of half-steps applies in other EDO's, you need to use intervals that are n steps in m-EDO where n and m are relatively prime.*
      *To explain further: "m-EDO" means "m Equal Divisions of the Octave" (or similar), and the smallest interval in such a system is a 2^(1/m) ratio or frequency or wavelenth. To get an interval cycle that passes through every note of m-EDO, you need an interval whose ratio is 2^(n/m) where the greatest common divisor of n and m is 1. In 12-EDO, n must be 1 (single half step), 5 (perfect fourth = 5 half steps), 7 (perfect fifth = 7 half steps), 11, (major seventh = 11 half-steps) or possibly other numbers like -1 (half-step in other direction) or 13 (minor ninth) that are octave-equivalent to those, so we just have the circle of fifths and the circle of half-steps, where-as other intervals cycle before getting to every note:
      whole step (2^(2/12)=2^(1/6)) generates 6-EDO, e.g. a whole tone scale
      minor third (2^(3/12)=2^(1/4)) generates 4-EDO, e.g. a fully diminished seventh chord
      major third (2^(4/12)=2^(1/3)) generates 3-EDO, e.g. an augmented chord
      tritone (2^(6/12)=2^(1/2)) generates 2-EDO, e.g. two notes a tritone apart in each octave
      minor sixth (2^(8/12)=2^(2/3)) generates 3-EDO
      major sixth (2^(9/12)=2^(3/4)) generates 4-EDO
      minor seventh (2^(10/12)=2^(5/6)) generates 6-EDO
      octave (2^(12/12)=2^(1/1)=2) generates 1-EDO one note in each octave
      major ninth (2^(14/12)=2^(7/6)) generates 6-EDO,
      etc.
      In other EDOs, you would have more cycles that go through every note, for example, in prime number EDOs like 31-EDO, every single interval generates such a cycle.

    • @YuvalS.8026
      @YuvalS.8026 10 місяців тому +15

      That's why I think it'll be interesting to check out more primal numbered polygons, since 11 did factor a new sequence

    • @zyklqrswx
      @zyklqrswx 10 місяців тому +10

      @@lemming7188 somebody better do a paper on this

  • @crushermach3263
    @crushermach3263 10 місяців тому +122

    I like the attention to little details. The little wind up the polygons do in the opposite direction before turning regularly and the slow down at the end of the rotation. You didn't have to do that. It didn't help majorly with the visualization, but you did it anyways. Kudos.

    • @dereknolin5986
      @dereknolin5986 9 місяців тому +7

      Yeah, that was very nice!

    • @PanHedonic
      @PanHedonic Місяць тому +1

      Agree! I enjoyed that, too!

  • @woah284
    @woah284 10 місяців тому +768

    Hendecagon sounds like the Game Cube startup screen

    • @jhoni_48hz95
      @jhoni_48hz95 10 місяців тому +36

      That's why this so nostalgic but i don't know where the tune come from 😂

    • @blahdelablah
      @blahdelablah 10 місяців тому +13

      It also sounds like one of the sounds used in Brain Training for the Nintendo DS.

    • @Farvadude
      @Farvadude 10 місяців тому +6

      it sounds like something from the original paper mario's soundtrack but i can't remember where

    • @MT-pe8bh
      @MT-pe8bh 10 місяців тому +19

      @@Farvadude Sounds like the endless staircase from Mario 64

    • @Farvadude
      @Farvadude 10 місяців тому +10

      @@MT-pe8bh you're right that's it

  • @MischaKavin
    @MischaKavin 10 місяців тому +123

    If there's gonna be a follow-up, it would be really cool to have the notes play in a few octaves, then do a gentle bandpass on the middle frequencies. You'd get a cool variant on that staircase illusion, and hitting C again wouldn't be as stark!

    • @toddhoustein
      @toddhoustein 10 місяців тому

      Shepard tones ua-cam.com/video/PwFUwXxfZss/v-deo.html

    • @teraspeXt
      @teraspeXt 10 місяців тому

      decagon

  • @channalbert
    @channalbert 10 місяців тому +277

    It's insane to see the consequences of modular arithmetic in mod12 (the arithmetic of clocks, i.e. 6 + 7 = 1, 8+8 = 4, etc) in music so clearly. For example, 11 = -1 (as in one hour before 12:00, that is, one hour before 00:00). You can see that the effect of an 11 sided polygon is the same as a "1 sided polygon" (aka, a needle), but ticking backwards due to the minus sign. The same happens with 7 = -5, that's why a 7 and 5 sound the same but backwards. More generally, this happens with any two numbers a and b that add up to 12 (or a multiple of 12), like 3 and 9, because 9 = -3.

    • @elliottbeckerpeeler9697
      @elliottbeckerpeeler9697 10 місяців тому +6

      fascinating connections!

    • @Th_RealDirtyDan
      @Th_RealDirtyDan 10 місяців тому +12

      Which is also why 6 in either direction sounds exactly the same

    • @mykelhawkmusic
      @mykelhawkmusic 9 місяців тому +2

      Took the words right out my mouth 💯

    • @channalbert
      @channalbert 9 місяців тому +2

      @@Th_RealDirtyDan Wow, true! Did not even realize!

  • @Typical.Anomaly
    @Typical.Anomaly 10 місяців тому +96

    9:26 I knew it was coming, but it still gave me chills.
    13-gon: same as 11
    14-gon: faster tritone-apart chromatic scale
    15-gon: fast repeating augmented chords?
    16-gon: fast repeating dim 7 chords?
    17-gon: go away
    18-gon: whole-tone chords, _really fast_
    19-gon: leave me alone

    • @Mr.Nichan
      @Mr.Nichan 10 місяців тому +11

      I expect all the prime-number-gons will do either chromatic scales or circles of fifths due to a couple of symmetries of the situation. Actually, all n-gons where n is relatively prime with 12 (so isn't divisible by 2 or 3) should have this property. The first non-prime one of these is 25, which should play the circle of fifths in the same direction it rotates since it's one more than 24, which is 2 times 12.

    • @jimmygarza8896
      @jimmygarza8896 10 місяців тому +5

      Pentadecagon should be 3 simultaneous chromatic scales, each a major third apart.

    • @Typical.Anomaly
      @Typical.Anomaly 10 місяців тому +1

      @@jimmygarza8896 Technically that's the same as "fast repeating augmented chords," but I should have stated that they move in a chromatic loop.

    • @jimmyfahringer5588
      @jimmyfahringer5588 9 місяців тому +3

      I want to hear the 17-gon.

    • @shentsaceve5642
      @shentsaceve5642 8 місяців тому

      20 - Rick Rolled

  • @alnitaka
    @alnitaka 10 місяців тому +173

    Try a 120-45-15 degree triangle. You will get all the major or minor chords, depending on how you orient the triangle.

    • @elka-nato
      @elka-nato 10 місяців тому +50

      Indeed, "imperfect" polygons are way more useful musically-speaking than "perfect" polygons. The "everything's a little broken, and that's ok" thing applies here gracefully!

    • @louisaruth
      @louisaruth 9 місяців тому +21

      have you ever noticed that the triangle you're describing can be flipped to be the other? major and minor chords are just reflections of each other. blows my mind

    • @lunyxappocalypse7071
      @lunyxappocalypse7071 3 місяці тому +2

      @@louisaruth Yeah, its true that its isomorphic. Thats the main point of equal temperament. (Except for e flat and non perfect fifths)

    • @louisaruth
      @louisaruth 3 місяці тому +4

      @@lunyxappocalypse7071 really seems like something that should be discussed more often

  • @PrinceOfDarkness2k7
    @PrinceOfDarkness2k7 10 місяців тому +2478

    I challenge you to make a shape that looks like africa that plays Africa by Toto as it rotates.

    • @purple_rose959
      @purple_rose959 10 місяців тому +76

      that’s impossible

    • @d3tuned378
      @d3tuned378 10 місяців тому +157

      I challenge you to come up with a less zoomer idea

    • @akneeg6782
      @akneeg6782 10 місяців тому +194

      ​@@d3tuned378I challenge you to make a shape that looks like Africa that plays Africa by Toto as it rotates.

    • @d3tuned378
      @d3tuned378 10 місяців тому +17

      @@akneeg6782 that's the same idea

    • @claytronico
      @claytronico 10 місяців тому +22

      Mandelbrot plays Rosana.

  • @aaronkessman7832
    @aaronkessman7832 10 місяців тому +161

    The 11 sided one is such a cool rhythm. Like bossa nova played on a telephone

    • @aaronkessman7832
      @aaronkessman7832 10 місяців тому +2

      Subscribed BTW 😊

    • @Samichlaus01
      @Samichlaus01 10 місяців тому +3

      Sound like Gamecube intro:D

    • @nxyuu
      @nxyuu 9 місяців тому +1

      the rhythm isn't that interesting lol, it's just the notes

    • @normanberg6502
      @normanberg6502 9 місяців тому

      Press your luck gameshow

    • @RayoAtra
      @RayoAtra 3 місяці тому +2

      Its a great visual illustration of how tool incorporates 11's in scales and timing and polyrhythms for the exact same effect. its really pretty simple but it comes off as next level if you have the ear for it.

  • @TransPlantTransLate147
    @TransPlantTransLate147 10 місяців тому +66

    The nonagon going clockwise makes me think of some kind of cartoony Industrial Revolution-era factory scene, while going counterclockwise it just makes me think of a video game major boss intro.

    • @SquaredNES
      @SquaredNES 10 місяців тому +3

      photoshop flowey

    • @pikajade
      @pikajade 10 місяців тому +1

      the counter-clockwise one is actually really similar to a song called hyper zone 1 from kirby's dream land 3

    • @woah284
      @woah284 10 місяців тому

      Game Cube loading screen

    • @a_soulspark
      @a_soulspark 10 місяців тому +1

      the clockwise one sounds a lot like Nuclear Fusion from Touhou as well

    • @m90e
      @m90e 9 місяців тому

      Counterclockwise is just the first four notes of Hyper Zone 1 from Kirby’s Dreamland 3 (Final boss phase 1 theme)

  • @Budjarn
    @Budjarn 10 місяців тому +79

    I am very curious to see what this would look and sound like for equal divisions of the octave other than 12 (the best ones might be 5, 7, 17, 19, and 22, because they are relatively small, and contain one and only one circle of fifths).

    • @robo3007
      @robo3007 10 місяців тому +7

      Also I'd be interested to see 60, just because the large number of divisors it has would make for lots of chord combinations

    • @Budjarn
      @Budjarn 10 місяців тому +2

      @@robo3007 True!

    • @lasstunsspielen8279
      @lasstunsspielen8279 10 місяців тому +3

      60 would sound the same as 12 but 5 times quicker

    • @robo3007
      @robo3007 10 місяців тому +4

      @@lasstunsspielen8279 Yes but polygons that have a number of sides that is equal to a divisor of 60 but not of 12 will make chords that aren't heard here

    • @pez1870
      @pez1870 10 місяців тому +5

      you forgot 31!!!

  • @WhistlingStickman
    @WhistlingStickman 10 місяців тому +14

    8:43 Years ago, I used to draw stars of different #'s of vertices in different ways, so that I draw them accurately without drawing the vertices first. I wondered what a 12 pointed star would sound like on a piano, with each vertex being given a note on an octave. I played exactly this. The Hendecagon here is still part of my piano practice routine.

  • @SirFloIII
    @SirFloIII 10 місяців тому +141

    Do it again with the 23TET circle of fifths. 23 being a prime number will surely create interesting microtonal patterns.

    • @SZebS
      @SZebS 10 місяців тому +11

      no regular polygon will play a chord, you'll go over the circle in all different intervals

    • @ataraxianAscendant
      @ataraxianAscendant 10 місяців тому +9

      ​@@SZebS did you watch the video? the polygons' vertices don't need to line up with notes

    • @SZebS
      @SZebS 10 місяців тому +3

      @@ataraxianAscendant did you read my comment? Polygons only play chords of more than one vertex is touching a note at once

    • @sillyk2549
      @sillyk2549 10 місяців тому +11

      @@SZebSi dont think sirfloll explicitly mentioned chords

    • @SZebS
      @SZebS 10 місяців тому +5

      @@sillyk2549 he didn't, i'm just saying what will happen because 23 is prime

  • @thecloudwyrm7966
    @thecloudwyrm7966 10 місяців тому +41

    Very cool. I just KNOW your videos will blow up soon. In any case, it'd be neat to see this again with non-regular polygons. Keep up the awesome content

  • @fmachine86
    @fmachine86 10 місяців тому +12

    I had no idea what the pentagon would sound like but as soon as I heard the chromatic it makes perfect sense.

  • @danielmackeigan9710
    @danielmackeigan9710 10 місяців тому +26

    Music for your nightmares Haha. It all sounds like terrifying circus music because of all the chromaticism and tritones. The 11-sided shape was semi-reminiscent of tubular bells only more disturbing somehow 😎

  • @gideonimolina8025
    @gideonimolina8025 10 місяців тому +59

    Triangle: Creepy. Mystery.
    Square: Confusion. "Whodunnit?"
    Pentagon: Going up. Going down.
    Hexagon: Mysterious Grandfather clock. Watching the clock. Anticipation.
    Heptagon: Running down stairs. Running up stairs.
    Octagon: Being chased by the killer. Tumbling downhill..with the killer.
    Nonagon: Mysterious Windmill. (both sides)
    Decagon: ascending crystal stairs. Falling through glass.
    Hendecagon: Cubes rolling.
    Dodecagon: Stabby Stabby!

    • @m90e
      @m90e 9 місяців тому +1

      Is the hendecagon one just a reference to the GameCube intro (which it sounds like)

    • @TickleHellmo
      @TickleHellmo Місяць тому

      Triangle is Scooby and the gang looking for clues. Square (counterclockwise) is just Tchaikovsky's Nutcracker

    • @TickleHellmo
      @TickleHellmo Місяць тому

      @@m90eit even does the final logo stance

  • @starfishsystems
    @starfishsystems 10 місяців тому +22

    This rendering of tone intervals as a polygon of rotation is very clever! Now let's consider the IRREGULAR polygons of n sides.
    Not only could this be a very easy way for students to visualize the triads and chord extensions, but perhaps also pick up a preliminary sense of how cadences work,

  • @PrinceOfDarkness2k7
    @PrinceOfDarkness2k7 10 місяців тому +12

    What a great idea for a video, Algo. I like the voice narrated ones. The pentagon and hendecagon are good candidates for shorts.

  • @brianbecher5781
    @brianbecher5781 10 місяців тому +23

    The 11-gon had me saying "no whammy no whammy big bucks big bucks!" 🤣

  • @zakfoster1
    @zakfoster1 9 місяців тому +5

    I would love to hear this spread over more octaves
    And right angle triangles would be interesting too
    I hope you make more of these

  • @사라암-z9s
    @사라암-z9s 10 місяців тому +5

    Until now, I used to think that shape and music were unrelated. After watching this video, however, I realized that such things can be interconnected. I found it particularly fascinating how the number of angles in a shape corresponds to the difference in the number of notes played simultaneously. While I've had some interest in shapes, I've never really been into music. After watching this video, I feel like my understanding of music has improved compared to before. 10706

  • @xero.93.
    @xero.93. 10 місяців тому +50

    hendecagon sounds like an old nintendo sound effect

    • @wolfieeeee256
      @wolfieeeee256 10 місяців тому +10

      game cube starting up 😂

    • @ethosfm1262
      @ethosfm1262 9 місяців тому

      reminded me of old school Sesame Street from the 70s

  • @Composeyourselfcare
    @Composeyourselfcare 9 місяців тому +4

    I’d love to hear this series using different scales instead of the circle of fifths.. fascinating video!

  • @TheCultofshiva
    @TheCultofshiva 22 дні тому

    Its so cool how music, math and geometry are interconnected and can be used in such interesting ways as this.

  • @rycona9878
    @rycona9878 10 місяців тому +3

    Hendecagon is my new favorite shape. I'll take tritones and chromatics all day. Thanks for making this wonderfully interesting video!

  • @linkharris4472
    @linkharris4472 3 місяці тому

    0:17 triangle
    1:18 square
    2:10 pentagon
    3:14 hexagon
    4:06 heptagon
    5:05 octagon
    6:09 nonagon
    7:16 decagon
    8:12 hendecagon
    9:12 dodecagon

  • @mershere
    @mershere 10 місяців тому +4

    i shouldve entirely been prepared to have king gizzard enter my brain the moment a nonagon was mentioned but here we are. nonagon infinity opens the door

  • @Doc92IDH
    @Doc92IDH Місяць тому

    I love that the pentagon basically just reverts the circle of fifths (y'know, 5 sides). Completely and utterly logical and intuitive in hindsight, but I doubt many would've guessed that on their own!

  • @tobitron
    @tobitron 9 місяців тому +3

    Love it. I have had similair ideas combining it with the colour wheel of light.

  • @PanHedonic
    @PanHedonic Місяць тому +1

    This is mesmerizing. My favorite video ever. Thanks for creating this video!

  • @Israel220500
    @Israel220500 10 місяців тому +11

    Nice video. Interesting intersection between math (geometry, groups and modular arithmetic) and music.

    • @antoniusnies-komponistpian2172
      @antoniusnies-komponistpian2172 10 місяців тому +2

      This is not just an intersection imo, music is just as much applied maths like physics and informatics are

  • @JayDavisAtHome
    @JayDavisAtHome 5 місяців тому +1

    I was a music theory major in college and I find this more than extremely fascinating

  • @smarkalet9078
    @smarkalet9078 8 місяців тому +6

    So little kids next to a piano are just Dodecegons. Got it.

  • @jakeharvey6692
    @jakeharvey6692 10 місяців тому +2

    8:47 Starting on C, it’s really grooving if you subdivide 3+2+3+2+2

    • @ericleventhal
      @ericleventhal 9 місяців тому

      Keith Emerson Agrees: ua-cam.com/video/AGGpBXd7ToA/v-deo.html

  • @DissonantSynth
    @DissonantSynth 10 місяців тому +5

    The dodecagon creates a beautiful shifting rainbow on the keyboard!

  • @tomschoenke5519
    @tomschoenke5519 9 місяців тому +2

    I didn’t know that Pythagoras and Phillip Glass had a love child that made videos.
    Very resourceful!!

  • @Henrix1998
    @Henrix1998 10 місяців тому +80

    Honestly quite disappointing results, but that should have been expected because 12 is so divisible. Repeating this same exercise with chromatic scale instead of circle of fifth could be more interesting. Or using major scale, only 7 notes.

    • @JohanHidding
      @JohanHidding 10 місяців тому +5

      Ooh why not TET-19 with the circle of sixths!

    • @columbus8myhw
      @columbus8myhw 9 місяців тому +4

      The chromatic scale will give you the same stuff but in a different order.

  • @evennorthug2585
    @evennorthug2585 9 місяців тому +1

    This got real interesting when the notes were played sequentially. I expected a pentatonic chord for 5, but god chromatics. I find this approach both smart and creative. Just what music theory needs, after centuries with a system full of exceptions. Good work! You could animate the interval classes 1 thru 6 into a lydian scale using the formula n * (-1)^(n+m), n in 0...6, m being 0 or 1 for major and minor resp, the latter being tonal mode: 0,11,2,9,4,7,6,5, sorted and relative to 0: -5, -3, -1, 0, 2, 4, 6. Swap the m and you have the locrian (most minor) scale mode. Notice that negative offsets are odd and the positive even. So an Archimedean spiral would draw these scales, y's are n and x 's are pc, making x a function of y, that way matching the linear pitch axis horizontally, like on the piano keyboard. So I don't believe in 4096 sets, but in the Major scale, the only one containing all 6 interval classes, or 7 including the root. Nice, eh?

  • @jonestheguitar
    @jonestheguitar 10 місяців тому +6

    Nice video! Starting from the music end would be interesting - what's the irregular polygon that plays a major scale for example? (is there one?) - is there a shape that plays a 2 5 1 chord sequence, or an arpeggio/short melody etc.?

  • @joewoodhead2712
    @joewoodhead2712 9 місяців тому +1

    Legend has it that this is how the crash bandicoot soundtrack was written

  • @christianhoff689
    @christianhoff689 Місяць тому +3

    6:19 _______ infinity opens the door

    • @taidaka
      @taidaka 7 днів тому

      Neuron activation

  • @pietro5266
    @pietro5266 9 місяців тому

    This is brilliant -- combining geometry and music and finding very interesting tonal patterns they create. I think there's a lot more to be investigated regarding this.

  • @AldoRogerio-zu9ow
    @AldoRogerio-zu9ow 9 місяців тому +3

    8:22 peckidna from MSM third track on magical nexus be like:

  • @uchihandell
    @uchihandell 9 місяців тому +2

    Hendecagon:
    Progressive Metal. Thanks for posting.

  • @Tsugimoto1
    @Tsugimoto1 9 місяців тому +7

    8:30. Ah so that's how King Crimson writes their music.

    • @steverye8872
      @steverye8872 3 місяці тому +1

      It really Thelas my hun Ginjeet.

  • @c54kfs
    @c54kfs 15 годин тому

    Nerdy thing I learned as a composer: you learn a lot about Messiaen Modes visually when watching this.

  • @andrewksadventures
    @andrewksadventures 9 місяців тому +9

    Dodecagon = horror movie music.

  • @-______-______-
    @-______-______- 9 місяців тому +1

    This is interesting, but I would actually love to hear this where we hear the exact notes that are played where points touch the circle and not only when the exact contact points of the notes of the circle of fifths is touched.
    Using the example of the pentagon. If the top point is touching C, the next point is touching a slightly sharpened D, next point is touching a much more sharpened E. next point is touching a slightly sharpened Db and final point is touching a more sharpened Eb.
    Anyone else get what I mean by that?
    And I'd also like to hear a steady transition of the motion travelling around the circle, like a sustained chord that is rising in pitch with exactly the intervals that the different polygons denote.
    Each of the 12 segments of the pie can be broken into 30 microtones/pitches. So for example, C to G (and each of the other segments) actually has 30 subdivisions between the 2 notes. Where the points of the polygons touch at these points is what I'd really love to hear.

  • @yarlodek5842
    @yarlodek5842 10 місяців тому +5

    I love how the 11-gon is literally just tarkus

  • @speedzebra6613
    @speedzebra6613 9 місяців тому +2

    3:50 this is perfect for the I swallowed shampoo, probably gonna die, it smelled like fruit, that was a lie, meme.

  • @5FeetUnder__
    @5FeetUnder__ 10 місяців тому +4

    Very interesting!
    I do wonder how it would sound in equivalents of the circle of fifths in other tuning systems (if there exist any)

    • @MabInstruments
      @MabInstruments 10 місяців тому +1

      They exist.

    • @MabInstruments
      @MabInstruments 10 місяців тому

      For example, in 19 equal pitch divisions of the octave, the circle of perfect fifths can be described in steps of the tuning system as 0, 11, 3, 14, 6, 17, 9, 1, 12, 4, 15, 7, 18, 10, 2, 13, 5, 16, 8. It can be described in letters as F, C, G, D, A, E, B, F#, C#, G#, D#, A#, E# or Fb, B# or Cb, Gb, Db, Ab, Eb, Bb.

  • @ickorling7328
    @ickorling7328 Місяць тому

    The nonagon nexus key is the basis of what youve stumbled upon. It encodes the solfeggio frequencies. A series of roation of the nonagon where the degrees are added up reveals this pattern. Going deeper through the math procrss of the nonagon nexus key, one can even derive the fine structure constant.

  • @romanvolotov
    @romanvolotov 10 місяців тому +4

    would love to see an extended version based on 31-tet or other tuning systems

    • @elka-nato
      @elka-nato 10 місяців тому

      Second this, also for 19-, 24- and 53-TET

  • @KJ7JHN
    @KJ7JHN 9 місяців тому +1

    A randomized bounce bouncey ball could make an ineresting chord progression. Kind of like a wind chime.

  • @zupzupzupzup
    @zupzupzupzup 10 місяців тому +4

    How are you making these animations?

    • @AlgoMotion
      @AlgoMotion  10 місяців тому +4

      These are all written in Java using a graphical library called Processing (processing.org), and the built-in Java MIDI library for writing out MIDI, which then gets realized as audio with DAW plug-ins.

  • @HunnitAcreWoods
    @HunnitAcreWoods 29 днів тому

    I wonder why nobody does these with the Chromatic Scale arranged in a circle…
    What software was used for this?

  • @TheTeddyBearMaster2
    @TheTeddyBearMaster2 2 місяці тому +4

    8:19 I feel like I'm getting a mario kart item

  • @jrettetsohyt1
    @jrettetsohyt1 13 днів тому

    Interesting symmetry around 6.
    What about higher sided polygons spiraling up up into the next octave, and negative polygons spiraling down?
    What about multiple polygons rotating, but time spaced so it’s not just massive chords?
    What about rotating occult, religious, political symbols? And the alphabets/characters of various languages? Keeping proportions intact.

  • @BluesyBor
    @BluesyBor 10 місяців тому +3

    0:57 - a villain sneaking closer to you

  • @TheWizardMyr
    @TheWizardMyr 14 днів тому

    This is a fantastic demonstration of a few different concepts in group theory (Cosets; embeddings; factor groups; cyclic groups embedded in dihedral groups). The interplay of symmetries is something humans seem innately drawn to. One could say it resonates with something innate about being human.

  • @mathsboy8468
    @mathsboy8468 2 місяці тому +12

    1:04 Super Mario Sunshine >:0

  • @trulyunknowable
    @trulyunknowable 12 днів тому

    I love how on a tone clock, these are almost identical, just any time a chromatic scale plays on one, the circle of fifths plays on the other, and vice versa. Coincidentally, the decagon effectively sounds the same on both.

  • @Jomymadness
    @Jomymadness 9 місяців тому +3

    Nonagon infinity mentioned 🗣️🗣️

  • @PerfectlyNormalBeast
    @PerfectlyNormalBeast 10 місяців тому +2

    I'd be curious about an extension of this:
    Rotating a poygon on an arbitrary plane slicing a cone
    It would be an ellipse that touches, but draw rays from the center of the polygon, play notes when they cross one of the cone's vertical lines
    The height of the cone could represent ... something

  • @penguincute3564
    @penguincute3564 10 місяців тому +4

    8:45 OMG!!! NINTENDO GAME CUBE!?

  • @johnbaxter9875
    @johnbaxter9875 Місяць тому

    My hearing is gone. I cant hear anything coming through the tiny speakers of a cell phone, so correct me if im wrong and if you care to. Or perhaps tell me if i was right.
    The rotating octagoñ and the series of diminished chords whose roots ascend or descend in half stèps can be heard at the end of a song by the rock band "Queen".
    The song is "you take my breath away" and the effect is achieved with an echo/delay. The delay is roughly one second or 60 beats per minute. Each beat is divided into 3 segments or triplets. First a guitar playing descending half steps (3 per second) so that as the guitar descends 3 half steps an echo of the same guitar repeats those notes as it continues moving down. Evenually a vocal singing the same series of descending chromatic tones using the words "take my breath" over and over .
    Check it out. Check the entire song out. Or dont, i dont care.

  • @pal98111
    @pal98111 Місяць тому +2

    They all sound haunted.

  • @747447444
    @747447444 8 місяців тому

    Hexagon chords are:
    C9#11#5 (same with D, E, Gb, Ab & Bb)
    and
    Db9#11#5 (same with Eb, F, G, A & Cb)

  • @Gr0nal
    @Gr0nal 10 місяців тому +4

    Dodecagon got some stank

  • @robertodetree1049
    @robertodetree1049 10 місяців тому +1

    This is highly interesting and very well done, thank you for putting it in such an understandable way!

  • @montanasnack7483
    @montanasnack7483 10 місяців тому +10

    Literally just fourier series

    • @drdca8263
      @drdca8263 10 місяців тому +1

      ... not really? Or, I’m not seeing it

    • @StefaanHimpe
      @StefaanHimpe 10 місяців тому +4

      not related... we're looking at mod 12 arithmetic

    • @montanasnack7483
      @montanasnack7483 10 місяців тому +1

      @@StefaanHimpe yea youre right

    • @malik-a-creeper
      @malik-a-creeper 10 місяців тому +1

      no, just because you ar me watching a linear series of 1x? that's very ambiguous

    • @terabyte6903
      @terabyte6903 10 місяців тому +1

      huh?

  • @brunomcleod
    @brunomcleod 9 місяців тому +2

    9:34 That’s crack up 😂 it’s like I’ve had enough

  • @spcxplrr
    @spcxplrr 10 місяців тому

    i think the reason why it does this is that as the polygon rotates, notes are played in star patterns. the triangle creates the {12/3} star, which is actually three squares. It played all four squares at the same time. the square makes the {12/4} star, which is four triangles. {12/6} is six lines.
    the pentagon creates the {12/5} star, which is an actual star, where one line hits all 12 points and then loops back on itself. the {12/7} star, if it existed, would be equivalent to the {12/5} star, which is why it does the same thing as the pentagon. given the nature of the circle of fifths, if you find the notes five away from a given note, it will give the notes next to it on the chromatic scale. since going five points down the road is basically what the {12/5} star is, it makes a chromatic scale.
    similarly, constructing a {12/8} star will give you {12/4}, and so on.

  • @JayDavisAtHome
    @JayDavisAtHome 5 місяців тому +1

    I think it would be fascinating to have two separate but different polygons play at the same time

  • @loocheenah
    @loocheenah 9 місяців тому +1

    You can mix polygons to play shifting chord sequences

  • @derekcrook3723
    @derekcrook3723 9 місяців тому

    Just when I learned to draw a circle you now add all these others to learn !

  • @azloii9781
    @azloii9781 3 місяці тому

    Man is literally changing the way we understand music

  • @BBBag147
    @BBBag147 9 місяців тому +1

    I really wanted to see the circle featured

  • @gliderfan6196
    @gliderfan6196 Місяць тому

    Brilliant. It shows that our music is insanely asymmetric

  • @browsertab
    @browsertab 10 місяців тому +2

    Gamecube, it's Marvin. Your cousin, Marvin Cube. You know that new bootup sound you're looking for? Well, listen to this! 8:20

  • @esunisen3862
    @esunisen3862 7 місяців тому +1

    Musician: hey polygon, what notes do you play ?
    Dodecagon: All of them.

  • @evennorthug2585
    @evennorthug2585 9 місяців тому

    Chords and scales are cyclic groups, containing n consecutive integers. In a set of 12, the generators would be 1, 5, 7, and 11. Generator means the generated sequence will encompass all the elements, like the Circle of Fifths for generators 5 and 7, chromatic scale for generators 1 and 11.

  • @Robert-p5c
    @Robert-p5c 5 місяців тому +2

    2:55 why did that sound like galaxy colapse (song) 4:14 sounded that same

  • @christrengove7551
    @christrengove7551 9 місяців тому +1

    That was fun. The later ones were mostly more interesting than the early ones. I' like to hear the 13-gon and the 17-gon being prime, which means none of the notes are played simultaneously - pure melody and fast. I would also like to hear what the polygons would sound like if instead of the circle of fifths ordering the straight chromatic scale ordering was used.

  • @paradiselost9946
    @paradiselost9946 9 місяців тому

    all of this is fairly straightforward. the pent and heptagon seem odd at first but the circle of fifths is just that... FIVE, and its complement in base 12 is of course, seven...
    what i see interesting is that a minor chord is a mirror reflection of its major... CEG faces the opposite way to CEbG... FAC vs FAbC... etc etc...

  • @valdemarfredensborg9569
    @valdemarfredensborg9569 4 місяці тому +2

    6:10 Really opened the door for me

  • @RushianRichard
    @RushianRichard 6 місяців тому

    Trippin' hard on Hendecagon, like trancedelic asmr to my adhd, thx! 🤩 Dodecagon is just Jason Voorhees suddenly standing behind you.

  • @thegreenmanalishiyamadori371
    @thegreenmanalishiyamadori371 Місяць тому

    Thats a good idea for my daily practice Routine to deepen my understanding in the circle of 5th

  • @empmachine
    @empmachine 7 місяців тому

    Cool video!! You're showing some very neat aspects of modular arithmetic, how co-primality can be used to make encodings, and how that fails (makes a chord vs a single note) when there's common divisors. How encryption and number theory overlap with music is just awesome (but also makes sense if you compare the maths).
    Thanks for sharing!!

  • @sebbosebbo9794
    @sebbosebbo9794 9 місяців тому +1

    sry bold questions maybe ..but why is the circle build like that...?
    f.e. why the black & white keys near counter splited or opposite.

  • @dprggrmr
    @dprggrmr 9 місяців тому

    That's something I've been imagining since I was a kid. now I'm wandering how useful it cold be

  • @LordAikido
    @LordAikido 8 місяців тому

    The pentagram unstacks the circle of FIFTHs (penta = fifth. Your just taking 5 and dividing it by the number of points on the shape; so 5/5 = 1.) Maybe try this with something other than the circle of fifths, try a circles of 1st, or 2nds, or circle of semi tones.