Sweden Math Olympiad | A Very Nice Geometry Problem | 2 Methods

Поділитися
Вставка
  • Опубліковано 10 лис 2024

КОМЕНТАРІ • 28

  • @ritwikgupta3655
    @ritwikgupta3655 Місяць тому

    EC construction in 2 stages, first draw angle 40+theta at arbitrary point on AD extension and draw a parallel from C to meet the extension at E.

  • @santiagoarosam430
    @santiagoarosam430 Місяць тому

    CDAº=140º-θ→ ADBº=40º+θ→ BADº=60º-θ → Trazamos la paralela a BC por A y el simétrico de AC según el eje vertical que pasa por A→ Angulo llano en A =180º=θ+40º+60º-θ+40º+θ =θ+140º→ θ=180º-140º=40º.
    Gracias y un saludo.

  • @phungcanhngo
    @phungcanhngo Місяць тому

    Awesome.Thank you professor!

  • @marioalb9726
    @marioalb9726 Місяць тому +1

    Sine rule:
    sin θ / AD = sin 40°/ x
    sin 80° /AD = sin (θ+40°) /x
    Dividing:
    sinθ/sin80°=sin40°/sin(θ+40°)
    θ = 40° ( Solved √ )

    • @marioalb9726
      @marioalb9726 Місяць тому +1

      θ + (θ+40°) = 40° + 80°
      2θ = 80°
      θ = 40°

  • @ludmilaivanova1603
    @ludmilaivanova1603 Місяць тому +1

    1. Drop a perpendicular from A on BC ( point E) and extend it to intersect a line From B under 80 degrees angle(point F) so that BF=AB, AF=EF.
    2. Triangles AED and FED are equal. BD is perpendicular to AF as diagonals , therfore ABFD is a rhombus. Therefore, AB=FD=BF=AD =DC.
    Triangle ADC is equilateral, angle CAD=40degrees = angle DCA.

    • @rms3
      @rms3 Місяць тому

      I don't see that. Dropping a line from point A to point F that is perpendicular to BC and angle EBF = 80 deg will ensure that:
      1. AB = BF
      2. AD = DF
      3. Triangles AED and FED are equal
      4. BD is perpendicular to AF
      However, it does not follow that ABFD is a rhombus nor that AB = AD. Point D can move along the horizontal axis between E and C and preserve 1 - 4 without forming a rhombus.
      It does work out in this example that ABFD is a rhombus, but it cannot be assumed on the basis of showing that the intersecting diagonals are perpendicular. Any quadrilateral where the two adjacent sides are equal will result in perpendicular diagonals, e.g., a "kite".

    • @ludmilaivanova1603
      @ludmilaivanova1603 Місяць тому

      yes, you are right. It is not enough evidence that this is a rhombus. It has to be proved.

    • @ludmilaivanova1603
      @ludmilaivanova1603 Місяць тому

      @@rms3 i tried to prove the rhombus-unsuccessfully. Then i tried another method: bisect the 80 degrees angle. Point K on AC. Consider two triangles: BKC and ADC.They are congruent.Therefore AC=BC, then theta is 20 degrees. Am I right?

    • @rms3
      @rms3 Місяць тому

      @@ludmilaivanova1603 OK, so if:
      1. Angle BKC = DAC = 40 deg
      2. Both triangles share angle ACD = KCB = theta
      3. The obtuse angle in both triangles ACD and CKB = 140 - theta
      4. So, the two triangles are similar
      5. The side opposite 40 deg in triangle ACD (CD) = KC, by Law of Sines
      6. Therefore, the two triangles are congruent
      7. Since KC = KB, BKC is an isoceles triangle, so theta = angle KBC = 40 deg
      Yes, that seems to work.

    • @rms3
      @rms3 Місяць тому +1

      @@ludmilaivanova1603 OK, on further thought, just proving the that triangles ADC and BKC are congruent does not prove that they are isoceles. So, I guess your method does not work after all.
      The solution from comment below seems to work:
      "Using the law of sines in triangle ABD we find AB/sin(θ+40)=AD/sin80 and using the law of sines in triangle ADC we find AD/sin(θ)=AB/sin40 and from this sin(θ+40)*sin( θ)=sin(40)*sin(80) and from this θ=40"

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب Місяць тому +1

    Using the law of sines in triangle ABD we find AB/sin(θ+40)=AD/sin80 and using the law of sines in triangle ADC we find AD/sin(θ)=AB/sin40 and from this sin(θ+40)*sin( θ)=sin(40)*sin(80) and from this θ=40

  • @RAG981
    @RAG981 Місяць тому +1

    I did it as your method 1 by my goto method. But your method 2 is very ingenius.

    • @denisrenaldo3506
      @denisrenaldo3506 Місяць тому

      You are right. It is impossible to draw in a pure geometric way an angle equal to 40°+theta on AD. The second method appears only when you obtain the solution through method 1

  • @Metaverse-d9f
    @Metaverse-d9f Місяць тому

    cos(120°)=cos(40°+2θ)→θ=40°+kπ (k is a natural number), and since θ

  • @ludmilaivanova1603
    @ludmilaivanova1603 Місяць тому +1

    @ 9: 28 I have doubts regarding construction of an unknown angle, not sure its leg will hit the point C.

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 Місяць тому

    {80°B+40°A}=120°BA {120°BA+60°C}=:180°BCA 3^60 3^20^2 3^2^10^2 3^1^2^5^1 3^2^5^1 3^2^1^1 3^2 (BCA ➖ 3BCA+2).

  • @michaeldoerr5810
    @michaeldoerr5810 Місяць тому

    The angle theta is 40°. Believe it or not I actually understood the first method better than the second method. I guess that it was because I considered that a refresher of a fascinating trig identity. And not only that but I think that it was the pair of vertical angles that made the two methods similar to each other if I understood correctly. And the congruence postulate was AAA all thanks to the exterior angle theorem as well as the vertical angles. Two angles are congruent and equal the same angle while the other angles are congruent due to vertical angles and Law of Sines right???

  • @professorrogeriocesar
    @professorrogeriocesar Місяць тому +1

    Fiz contruindo um paralelogramo. Depois, arco capaz e enfim por ângulo inscrito.

  • @yuusufliibaan1380
    @yuusufliibaan1380 Місяць тому

    Thanks 🙏👍💯😊

  • @prossvay8744
    @prossvay8744 Місяць тому

    Delta=40°

  • @giuseppemalaguti435
    @giuseppemalaguti435 Місяць тому

    40

  • @holyshit922
    @holyshit922 Місяць тому

    Law of sines
    x/sin(40) = AD/sin(t)
    x/sin(40+t) = AD/sin(80)
    AD/x = sin(t)/sin(40)
    AD/x = sin(80)/sin(40+t)
    sin(t)/sin(40) - sin(80)/sin(40+t) = 0
    (sin(t)sin(40+t) - sin(80)sin(40))/(sin(40)sin(40+t)) = 0
    sin(t)sin(40+t) - sin(80)sin(40) = 0
    sin(t)(sin(40)cos(t)+cos(40)sin(t)) - sin(80)sin(40) = 0
    sin(40) sin(t)cos(t) +cos(40)sin^2(t) - sin(80)sin(40) = 0
    sin(40) tan(t) +cos(40)tan^2(t)- sin(80)sin(40)(1+tan^2(t)) = 0
    (cos(40) - sin(80)sin(40))tan^2(t) - sin(40) tan(t) - sin(80)sin(40)=0
    This gives us two results but one must be rejected
    theta = 40
    It appears that ADC is isosceles

  • @jarikosonen4079
    @jarikosonen4079 Місяць тому

    4:30 Is it possible to say 40°+θ=80° θ=40° from the arguments of the sin()-function?

    • @MathBooster
      @MathBooster  Місяць тому

      Yes, you can directly compare there, if you need single solution.

  • @wasimahmad-t6c
    @wasimahmad-t6c 7 днів тому

    30