Can you find area of the Purple Semicircle? | (Triangle) |

Поділитися
Вставка
  • Опубліковано 31 січ 2025

КОМЕНТАРІ • 77

  • @PreMath
    @PreMath  15 днів тому +19

    There is a simple way to solve this problem as well!
    However, I incorporated the additional concepts...
    My apologies for taking a longer approach!
    Thank you for your continued love and support🙏

    • @angeluomo
      @angeluomo 15 днів тому

      OK, I was going to point that out, but you and a plethora of your viewers have already done so.

    • @LuisdeBritoCamacho
      @LuisdeBritoCamacho 15 днів тому

      I am not the one who is going to criticize your approach. All Problems are good to revisit Mathematical Concepts.

    • @davesusko3517
      @davesusko3517 15 днів тому

      I was wondering if working with ODC would have been quicker. It’s always good to see multiple approaches to a problem. It keeps the mind nimble

    • @HappyMaths579
      @HappyMaths579 14 днів тому

      Good brother

    • @frankmutuma3360
      @frankmutuma3360 13 днів тому

      The small circle alone can handle the problem

  • @lukeheatley4148
    @lukeheatley4148 16 днів тому +15

    Much simpler and quicker to just use triangle ODC
    OD² + DC² = OC²
    r² + 4 = (r + 1)²
    r = 3/2
    π . r ² / 2 = 8 π / 9

    • @jeffreyhudale5633
      @jeffreyhudale5633 15 днів тому

      9× pi/8.

    • @MrPaulc222
      @MrPaulc222 15 днів тому +1

      Yes, I just did that, but I did it after a long day at work, so I excuse myself :)

    • @vinayakthite
      @vinayakthite 14 днів тому

      Correct I was going to say the same. No need to complete the problem further. But yeah we get to know one more way to solve the problem

  • @bijender6511
    @bijender6511 16 днів тому +31

    Join OD and apply Pythagoras theorem in triangle ODC

    • @boudjemamakouf5762
      @boudjemamakouf5762 15 днів тому +2

      C'est plus pratique et rapide .

    • @rhythmheaven
      @rhythmheaven 15 днів тому

      I did that, thanks for saying that is the fastest way

    • @marcelowanderleycorreia8876
      @marcelowanderleycorreia8876 15 днів тому +1

      Essa, sem dúvidas, é a forma mais rápida de resolver o problema. Mas o interessante é ver as propriedades geométricas que estão envolvidas. 👍👍

    • @Tmwyl
      @Tmwyl 15 днів тому +1

      That’s what I did.

    • @MM-rz7ll
      @MM-rz7ll 13 днів тому

      Exactly

  • @muradkhan8164
    @muradkhan8164 15 днів тому +8

    By Tangent secant theorem
    (1+2r)*1=2^2
    By solving it we'll get the radius

  • @ОльгаСоломашенко-ь6ы

    ∆ODC, OD=r, DC=2, OC=r+1. r^2+4=(r+1) ^2. r=1,5. S=3.14*1,5^2/2=3.14*1,125.

  • @zupitoxyt
    @zupitoxyt 15 днів тому +2

    The improvement i got is because of such a great teacher like you , thanks a lot sr
    I did it .

  • @marcelowanderleycorreia8876
    @marcelowanderleycorreia8876 15 днів тому

    Very good! 👍👍

  • @JangiLalPatel-wd4do
    @JangiLalPatel-wd4do 16 днів тому +3

    Radius can be obtained by in triangle odc

  • @zawatsky
    @zawatsky 16 днів тому +3

    4+r²=(r+1)². Раскрываем, r² ушёл, 4-1=3, остаётся 3=2r, откуда r=3/2. 1,5;2;2,5 это дробный Египет, (3;4;5)/2. S=πr²/2=π(3/2)²/2=π*3²/2³=(9/8)π=1¹/₈π.

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 15 днів тому +1

    I like the solution though it may be solved in an easier and speedy method.
    We enjoy every right solutions whether it is short or lengthy. Every solution is beautiful for its own nature.
    Thanks to all.

  • @imetroangola17
    @imetroangola17 15 днів тому +3

    *Simple solution:*
    Power at a point theorem C:
    DC² = EC × BC
    2² = 1 × (2r + 1)→ 4 = 2r + 1
    r = 3/2. Therefore, the area of the semicircle is:
    πr²/2 = *9π/8 square units.*

    • @davidseed2939
      @davidseed2939 15 днів тому +1

      Pythagoras inΔODC
      rr+4=(r+1)^2=rr+2r+1
      2r=3, r=3/2
      Area =πr^2/2= 9π/8

  • @alanthayer8797
    @alanthayer8797 15 днів тому

    NICE breakdown sir & THANKU for daily Solutions !

  • @narendrabag293
    @narendrabag293 15 днів тому

    Thank you sir

  • @ИванПоташов-о8ю
    @ИванПоташов-о8ю 15 днів тому +1

    DC²=BC*EC (tangent secant theorem). (2r+1)*1=2², so r=3/2, and S=1/2*(3/2)² *π=9π/8.

  • @devondevon4366
    @devondevon4366 16 днів тому

    3.534
    This might easier than I thought. Draw a perpendicular line from D to the circle's center to form a right triangle
    the sides are r + 1 , r and 2.
    Employed Pythagorean Theorem
    Hence (r+1)^2 = r^2 +4
    r^2 + 2r +1 =r^2 +4
    2 r+ 1 = 4
    2r =4-1 (earlier I put 4 + 1 , instead of 4 -1 and got 5)
    2r =3
    r = 1.5
    Area of semi circle = 2.25 pi/2
    1.125 pi or 3.534 answer

  • @alexniklas8777
    @alexniklas8777 16 днів тому +1

    (r+1)^2-r^2= 4; r^2+2r+1-r^2=4;
    2r=3; r=3/2.
    S= π×r^2/2= 9π/8

  • @jtechnicalgaming7831
    @jtechnicalgaming7831 15 днів тому +3

    That was a simple question sir
    I had just joined OD and applied pythagoras theorem
    We will get radios
    I solved it 😊😊😊

  • @joseeduardomachado3436
    @joseeduardomachado3436 4 дні тому

    Interessante o exercício. Gostei.

  • @jamestalbott4499
    @jamestalbott4499 15 днів тому

    Thank you!

  • @sohail2556
    @sohail2556 15 днів тому

    Well done sir ,

  • @himo3485
    @himo3485 15 днів тому

    OD=OE=r r²+2²=(r+1)² r²+4=r²+2r+1 2r=3 r=3/2
    Semicircle area = 3/2*3/2*π*1/2 = 9π/8

  • @murdock5537
    @murdock5537 15 днів тому

    Nice! BE = 2r → 4 = (1)(2r + r) → r = 3/2 → πr^2/2 = 9π/8

  • @cyruschang1904
    @cyruschang1904 15 днів тому

    r^2 + 2^2 = (r + 1)^2 = r^2 + 2r + 1 => r = 3/2
    Semicircle area = (3/2)(3/2)(π)/2 = 9π/8

  • @sorourhashemi3249
    @sorourhashemi3249 10 днів тому

    Thanks easy

  • @gyanchandramathur530
    @gyanchandramathur530 15 днів тому

    Please directly apply Pythagoras Theorem in triangle ODC ,
    ( r+1)* = r* +2*,
    or , r* +2r +1 = r* + 4
    whence 2r = 3
    & r = 3

  • @MrPaulc222
    @MrPaulc222 15 днів тому

    DCO is a right triangle with sides r, 2, and r+1.
    r^2 + 4 = r^2 + 2r + 1
    4 = 2r+1
    2r=3
    r = 3/2
    r^2 = 9/4
    For a full circle it is (9/4)pi, so for the semicircle the area is (9/8)pi un^2
    (9pi)/8
    Approx 3.53 un^2

  • @phungpham1725
    @phungpham1725 15 днів тому +1

    1/Label the diameter BE= d
    By tangent secant theorem:
    Sq CD= CExCB
    -> 4= 1x(1+d) --> d=3
    Area= pi x sqd/8= pi x 9/8 sq units😅😅😅

  • @shazullahyusufzai5704
    @shazullahyusufzai5704 15 днів тому

    Easy way triangle ODC (r+1)^2 = r^2+2^2. r^2+2r+1=r^2+4. 2r=3. r=3/2
    A= 3,14x9/4

  • @AmirgabYT2185
    @AmirgabYT2185 16 днів тому +2

    S=1,125π≈3,532

  • @mosasaddeg893
    @mosasaddeg893 15 днів тому

    Use the small triangle without referring to the similarity of triangles
    And who used the Pythagorean theorem in the small triangle

  • @wackojacko3962
    @wackojacko3962 15 днів тому

    @ 7:17 , equivalent equations. I love the math! 😊

  • @skverma7278
    @skverma7278 15 днів тому

    There is no need to calculate x.
    Join OD, OCD is right triangle.
    Now
    4+r^=(r+1)^
    4= (r+1+r) (r+1-r)
    4= 2r+1
    r=1.5

  • @marcgriselhubert3915
    @marcgriselhubert3915 16 днів тому

    Very easy! In triangle ODC we have OC^2= OD^2 + DC^2, so (R + 1)^2 = R^2 = 2^2, so R^2 + 2.R + 1 = R^2 + 4, so R = 3/2.
    The area of the semi circle is then (Pi/2).(R^2) = (Pi/2).(9/4) = (9/8).Pi

  • @yakovspivak962
    @yakovspivak962 12 днів тому

    (R + 1)^2 = R^2 + 4
    R = 1.5

  • @Waldlaeufer70
    @Waldlaeufer70 15 днів тому

    1 (1 + 2r) = 2^2
    1 + 2r = 4
    2r = 3
    r = 3/2
    ...

  • @syedsharifuddinahmad2422
    @syedsharifuddinahmad2422 13 днів тому

    Sol
    In ∆ODC
    2^2+r^2=(r+1)^2
    =>r=3/2
    ∆=πr^2/2=9π/8

  • @marioalb9726
    @marioalb9726 14 днів тому

    Tangent Secant theorem:
    (2R+1)*1=2²
    R = (4-1)/2 = 1,5 cm
    A = ½πR² = 3,5343 cm² ( Solved √ )

  • @technologyk9229
    @technologyk9229 12 днів тому

    Joining oD and applying py theoram than r=3/2
    full circle area is =πr²
    So semicircle area is = 1/2 πr²
    = 11/7×9/4
    = 3.53

  • @AllmondISP
    @AllmondISP 15 днів тому

    There is a much simpler way to solve this then any steps were taken by PreMath and the comments. We have a tangent to the circle and a crossing line to the circle from the same point
    This all we need.

  • @Rudepropre
    @Rudepropre 15 днів тому

    Use power of point theorem to find r then use (pi*r^2)/2

  • @math-problem6940
    @math-problem6940 14 днів тому

    I think this problem not need tangent circle AB and OD that you suppose by X.
    It's enough use triangle OCD with Pytagoras formula.
    Warm regards from Indonesia.
    🙏🙏🙏

  • @JSSTyger
    @JSSTyger 12 днів тому

    r/(r+1)=h/(h+2)
    r(h+2)=h(r+1)
    2r=h
    (2r+1)^2+(2r)^2=(2r+2)^2
    4r^2+4r+1+4r^2=4r^2+8r+4
    4r^2-4r-3=0
    r^2-r-(3/4)=0
    r=[1+-sqrt(1+3)]/2
    r=1.5
    A=pi(1.5)^2/2=9pi/8

  • @PolishchukMaxim
    @PolishchukMaxim 15 днів тому

    There is overhead in video... r^2 + 2^2 = (r + 1)^2 --- it is enough to solve this issue.

  • @EinSofQuester
    @EinSofQuester 14 днів тому

    R^2 + 4 = (r + 1)^2
    And solve for r. Easy Peasy!

  • @MegaSuperEnrique
    @MegaSuperEnrique 15 днів тому

    Equation 1 not needed to find r, just start with ODC and use Pythagorean Theorem. Equation 1 would have been helpful if you had asked for the area of the triangle ABC!👍

  • @devondevon4366
    @devondevon4366 16 днів тому

    3.534

  • @md.zahirulhoque8452
    @md.zahirulhoque8452 16 днів тому +1

    Bro I watch your videos more less everyone after i got your channel so don't take it as a hate comment
    But i think 🔺DCO is right Triangle so we can apply pythagoras on it and if radius is r then we get the equation (r+1)^2=r^2 + 2^2 and solve for r why make things complicated? Is there any reason? 🤔

  • @bijaykumarrath288
    @bijaykumarrath288 14 днів тому +1

    Dear sir , why you are resorting to so much of unnecessary steps ? . It speaks bad of your reputation.

  • @mintusaren895
    @mintusaren895 14 днів тому

    Pai r square.

  • @SandraDevant
    @SandraDevant 15 днів тому +1

    Omg why is this so dam difficult no wonder kids hate math

  • @nenetstree914
    @nenetstree914 16 днів тому

    9pi/8

  • @sergioaiex3966
    @sergioaiex3966 15 днів тому

    Solution:
    Lets label the lengths below
    BO = DO = EO = r
    Applying Pythagorean Theorem in ∆ CDO, we will get:
    CD² + DO² = CO²
    (2)² + (r)² = (r + 1)²
    4 + r² = r² + 2r + 1
    4 = 2r + 1
    2r = 3
    r = 3/2
    Semicircle Area (SA) = ½ π r²
    SA = ½ π (3/2)²
    SA = ½ π 9/4
    SA = 9π/8 Square Units ✅
    SA ≈ 3.5342 Square Units ✅

  • @bijaykumarrath288
    @bijaykumarrath288 14 днів тому +1

    Very very unsatisfactory.

  • @joeschmo622
    @joeschmo622 15 днів тому

    Nah, too much work. Figured it out from the thumbnail.
    Right triangle: sides 2 and r, hypotenuse 1+r. r=3/2.
    Then finally 9/4 pi for a circle and 9/8 pi for a semicircle.
    ✨Magic!✨

  • @rafiqueshaikh1491
    @rafiqueshaikh1491 10 днів тому

    2 other way easier method.
    Rafiq's classes

  • @unknownidentity2846
    @unknownidentity2846 15 днів тому

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    ADC is a tangent to the circle, so we can apply the tangent-secant theorem. With r being the radius of the semicircle we obtain:
    CD² = CE*BC = CE*(CE + OB + OE) = CE*(CE + r + r) = CE*(CE + 2*r)
    CD²/CE = CE + 2*r
    CD²/CE − CE = 2*r
    ⇒ r = (CD²/CE − CE)/2 = (2²/1 − 1)/2 = (4 − 1)/2 = 3/2
    Let's check this result. Since AB and ADC are tangents to the semicircle, according to the two tangent theorem we know that AB=AD. AB is a tangent to the semicircle, so we know that ∠ABC=90°. Therefore ABC is a right triangle and we can apply the Pythagorean theorem:
    BC = CE + 2*r = 1 + 2*(3/2) = 4
    AC² = AB² + BC²
    (AD + CD)² = AD² + BC²
    AD² + 2*CD*AD + CD² = AD² + BC²
    2*CD*AD = BC² − CD²
    ⇒ AB = AD = (BC² − CD²)/(2*CD) = (4² − 2²)/(2*2) = (16 − 4)/4 = 12/4 = 3
    ⇒ AC = AD + CD = 3 + 2 = 5
    We obtain that ABC is a 3-4-5 right triangle. The triangle OCD should also be a right triangle and similar to ABC:
    CD = 2
    OD = r = 3/2
    OC = OE + CE = r + CE = 3/2 + 1 = 5/2
    OD:CD:OC = (3/2):2:(5/2) = 3:4:5 ✅
    Everything seems to be all right. So we can finally calculate the area of the semicircle:
    A(semicircle) = πr²/2 = π*(3/2)²/2 = 9π/8
    Best regards from Germany

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 15 днів тому

    MY RESOLUTION PROPOSAL :
    01) Radius = R lin un
    02) OD^2 + DC^2 = OC^2. Note that OC = (R + 1) lin un.
    03) R^2 + 4 = (R + 1)^2
    04) R^2 + 4 = R^2 + 2R + 1 ; 2R = 3 ; R = 3/2 lin un
    05) Seemi Circle Area = (Pi * R^2) / 2
    06) SCA = (9*Pi/4) / 2
    07) SCA = 9Pi/8 sq un
    Therefore,
    MY BEST ANSWER :
    The Semicircle Area is equal to (9Pi/8) Square Units. Or Semicircle are is equal to approx. 3,5 Square Units.

  • @sdsomar1
    @sdsomar1 15 днів тому

    Why did u go thru all that nonsense with the x. Why y just don’t do. R squared plus 4 equal to (r+2) squared

  • @mohanramachandran4550
    @mohanramachandran4550 15 днів тому

    𝕊𝕀𝕄ℙ𝕃𝔼 𝕎𝔸𝕐
    𝕊𝕝𝕠𝕧𝕖 𝕓𝕪 𝕦𝕤𝕚𝕟𝕘 𝕋𝕣𝕚𝕒𝕟𝕘𝕝𝕖 𝕆𝔻ℂ