Lune of Hippocrates | Can you find area of the Purple shaded region? |

Поділитися
Вставка
  • Опубліковано 7 лют 2025
  • Learn how to find the area of the Purple shaded region. Important Geometry and Algebra skills are also explained: Pythagorean Theorem; area of a triangle formula; Semicircle; Quarter circle; area of a circle formula. Step-by-step tutorial by PreMath.com
    Today I will teach you tips and tricks to solve the given olympiad math question in a simple and easy way. Learn how to prepare for Math Olympiad fast!
    Step-by-step tutorial by PreMath.com
    • Lune of Hippocrates | ...
    Need help with solving this Math Olympiad Question? You're in the right place!
    I have over 20 years of experience teaching Mathematics at American schools, colleges, and universities. Learn more about me at
    / premath
    Lune of Hippocrates | Can you find area of the Purple shaded region? | #math #maths | #geometry
    Olympiad Mathematical Question! | Learn Tips how to solve Olympiad Question without hassle and anxiety!
    #FindPurpleArea #QuarterCircle #Semicircle #Radius #AreaOfTriangle #GeometryMath #Triangle #PythagoreanTheorem #PerpendicularBisectorTheorem
    #MathOlympiad #ThalesTheorem #RightTriangle #RightTriangles #CongruentTriangles
    #PreMath #PreMath.com #MathOlympics #HowToThinkOutsideTheBox #ThinkOutsideTheBox #HowToThinkOutsideTheBox? #FillInTheBoxes #GeometryMath #Geometry #RightTriangles
    #OlympiadMathematicalQuestion #HowToSolveOlympiadQuestion #MathOlympiadQuestion #MathOlympiadQuestions #OlympiadQuestion #Olympiad #AlgebraReview #Algebra #Mathematics #Math #Maths #MathOlympiad #HarvardAdmissionQuestion
    #MathOlympiadPreparation #LearntipstosolveOlympiadMathQuestionfast #OlympiadMathematicsCompetition #MathOlympics #CollegeEntranceExam
    #blackpenredpen #MathOlympiadTraining #Olympiad Question #GeometrySkills #GeometryFormulas #Angles #Height
    #MathematicalOlympiad #OlympiadMathematics #CompetitiveExams #CompetitiveExam
    How to solve Olympiad Mathematical Question
    How to prepare for Math Olympiad
    How to Solve Olympiad Question
    How to Solve international math olympiad questions
    international math olympiad questions and solutions
    international math olympiad questions and answers
    olympiad mathematics competition
    blackpenredpen
    math olympics
    olympiad exam
    olympiad exam sample papers
    math olympiad sample questions
    math olympiada
    British Math Olympiad
    olympics math
    olympics mathematics
    olympics math activities
    olympics math competition
    Math Olympiad Training
    How to win the International Math Olympiad | Po-Shen Loh and Lex Fridman
    Po-Shen Loh and Lex Fridman
    Number Theory
    There is a ridiculously easy way to solve this Olympiad qualifier problem
    This U.S. Olympiad Coach Has a Unique Approach to Math
    The Map of Mathematics
    mathcounts
    math at work
    Pre Math
    Olympiad Mathematics
    Two Methods to Solve System of Exponential of Equations
    Olympiad Question
    Find Area of the Shaded Triangle in a Rectangle
    Geometry
    Geometry math
    Geometry skills
    Right triangles
    imo
    Competitive Exams
    Competitive Exam
    Calculate the Radius
    Equilateral Triangle
    Pythagorean Theorem
    Area of a circle
    Area of the sector
    Right triangles
    Radius
    Circle
    Quarter circle
    coolmath
    my maths
    mathpapa
    mymaths
    cymath
    sumdog
    multiplication
    ixl math
    deltamath
    reflex math
    math genie
    math way
    math for fun
    Subscribe Now as the ultimate shots of Math doses are on their way to fill your minds with the knowledge and wisdom once again.

КОМЕНТАРІ • 35

  • @CharlesB147
    @CharlesB147 6 днів тому +2

    It's the Lune of Hippocrates! Awesome problem!

    • @PreMath
      @PreMath  6 днів тому

      Thanks for the feedback ❤️🙏

  • @ravikrpranavam
    @ravikrpranavam 5 днів тому

    Well explained

  • @Marcus-y1m
    @Marcus-y1m 6 днів тому +1

    It was easy peasy

  • @AzouzNacir
    @AzouzNacir 6 днів тому +3

    A=(π*(4*√2)²/2)-((π*8²)/4-(8*8/2))
    A=32

  • @EPaozi
    @EPaozi 6 днів тому +1

    Surprenant et amusant. Bonne journée

  • @MdShahriarHossain-l1n
    @MdShahriarHossain-l1n 6 днів тому +1

    Too easy to solve

  • @jtechnicalgaming7831
    @jtechnicalgaming7831 5 днів тому

    Nice problem sir
    I solved it 😊😊😊

  • @marioalb9726
    @marioalb9726 6 днів тому +1

    R=r√2 --> R²= 2r² , Then :
    Semicircle area = Quarter circle area
    Then :
    Shaded area = Isosceles right triangle area
    A = ½bh = ½R² = ½8² = 32cm²

  • @MrPaulc222
    @MrPaulc222 6 днів тому

    Although not mentioned, I'm assuming the wider arc between A and C is a semicircle - it looks that way visually.
    The straight line AC is 8*sqrt(2).
    r (OC or OB) = 4*sqrt(2). Area of semicircle is 16pi un^2.
    Calculate inner arc of AC and subtract it from 16pi.
    Quadrant ABC area = 16pi.
    Inner arc AC = 16pi - 32
    Sln: 16pi - (16pi - 32)
    Purple area = 32 un^2.

  • @alexundre8745
    @alexundre8745 6 днів тому

    Bom dia Mestre
    Desejo-lhe um mês abençoado q se inicia
    Grato pela aula

  • @jamestalbott4499
    @jamestalbott4499 6 днів тому

    Thank you!

  • @AmirgabYT2185
    @AmirgabYT2185 6 днів тому +2

    S=32 square units

  • @zawatsky
    @zawatsky 6 днів тому +1

    АС=8√2, это диаметр полукруга. Он же - основание ▲АВС. Сперва ищем площадь жёлтого сегмента, она получается вычитанием треугольника из четверти круга. Площадь четверти круга S₁=π8²/4=8π*2=16π. Площадь равностороннего прямоугольного ▲АВС S(ABC)=8²/2=8*4=32. S₂=16π-32. Радиус полукруга r=8√2/2=4√2. Его площадь S₂=(4√2)²π/2=16*2π/2=16π. Таким образом искомая площадь серпа S=16π-(16π-32)=16π-16π+32=32, т. е. точно равна площади треугольника.

  • @santiagoarosam430
    @santiagoarosam430 6 днів тому

    Radio púrpura =r=CO=8√2/2=4√2 ---> Área sombreada púrpura =(πr²/2)-(π8²/4)+(8²/2) =16π-16π+64/2=32 u².
    Gracias y un saludo cordial.

  • @marioalb9726
    @marioalb9726 6 днів тому +1

    Semicircle:
    A₁= ½π(R/√2)² = ½πR²/2= ¼πR²
    Circular Segment :
    A₂= ½R²(α-sinα)= ½R²(π/2-1)= ¼πR²-½R²
    Shaded area:
    A= A₁-A₂= ½R²= ½8²= 32 cm² (Solved √)

  • @pas6295
    @pas6295 6 днів тому

    We have the triangle with sides 8 units and a rt. Angled one so the Hypotenuse is 8^2+8^2.√ of that. @ √128. This is the diameter. Hence its radius is √128/2. =8/√2.contd after seeing the figure.

  • @marioalb9726
    @marioalb9726 6 днів тому +2

    A₁ = ¼πR²
    A₂ = ½π(R/√2)² = ½πR²/2= ¼πR²
    A₁=A₂ ; A = A₁-A₂+A₃
    A=A₃= ½bh = ½8² = 32 cm² ( Solved √)

  • @himo3485
    @himo3485 6 днів тому

    AO=OC=√[8²+8²]/2=4√2
    Purple shaded area = 8*8*1/2 + 4√2*4√2*π*1/2 - 8*8*π*1/4 = 32 + 16π - 16π = 32

  • @christopherellis2663
    @christopherellis2663 6 днів тому

    The Area of the Lune 🌙 is the same as the Area of the Triangle 🔺️

  • @pas6295
    @pas6295 6 днів тому

    Areas ( Sum of both purpol and Yellow is πr^2./2.So it is Half

  • @phungpham1725
    @phungpham1725 6 днів тому

    1/ Label BC=AB = a --> OA=OC=a sqrt2/2
    2/ Let A be the area of the isosceles triangle ABC
    We have: Area of the yellow segment = area of the 1/4 yellow circle- A
    = pix sqa/4 - A (1)
    And Area of the purple region = 1/2 Area purple circle - Area of the yelow segment
    = 1/2 xpi x sq (asqrt2/2)-
    ( pixsqa/4-A)
    = pix sqa/4 -pixsqa/4+ A
    --> Area of the purple region = A=32 sq units😅😅😅

  • @DavidLovelady
    @DavidLovelady 6 днів тому

    I’m not a math wizard by any means but last I checked acres is a measurement of area
    That is what the problem is
    To find the area
    The measurements given are linear

  • @pas6295
    @pas6295 6 днів тому

    It if Half πr^2.. But r is 8/√2. U have π×(8/√2) ^2. So it 64/4. Which is 16. Sq units

  • @unknownidentity2846
    @unknownidentity2846 6 днів тому +1

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    Let R be the radius of the quarter circle and let r be the radius of the semicircle. Since ABC is a right triangle, we can apply the Pythagorean theorem:
    AC² = AB² + BC²
    (2r)² = R² + R²
    4r² = 2R²
    ⇒ r²/2 = R²/4
    Now we are able to calculate the area of the purple region:
    A(purple)
    = A(semicircle) − A(yellow circle segment)
    = A(semicircle) − [A(yellow quarter circle) − A(triangle ABC)]
    = A(semicircle) − A(yellow quarter circle) + A(triangle ABC)
    = πr²/2 − πR²/4 + A(triangle ABC)
    = πR²/4 − πR²/4 + A(triangle ABC)
    = A(triangle ABC)
    = (1/2)*AB*BC
    = R²/2
    = 8²/2
    = 32
    Best regards from Germany

  • @cyruschang1904
    @cyruschang1904 6 днів тому

    Yellow quarter circle area = (8)(8)π/4 = 16π
    Yellow triangle area = (8)(8)/2 = 32
    Semicircle area = (π/2)[(8√2)/2]^2 = 16π
    Purple area = 16π + 32 - 16π = 32

  • @marcgriselhubert3915
    @marcgriselhubert3915 6 днів тому

    Easy. The radius of the big circle is R = OA = OC = (8.sqrt(2))/2 = 4.sqrt(2). The area of the big semi circle is (Pi.(R^2))/2 = (Pi.32)/2 = 16.Pi
    The area of the triangle ABC 1s (1/2).8.8 = 32. The area of the small quater circle is (Pi.(r^2))/4 with r = 8, so it is (Pi.64)/4 = 16.Pi
    Finally the purple area is 16.Pi + 32 - 16.Pi = 32.

  • @JSSTyger
    @JSSTyger 6 днів тому

    32 sir

  • @nenetstree914
    @nenetstree914 6 днів тому

    32

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 6 днів тому

    MY RESOLUTION PROPOSAL :
    01) OC = OA = R lin un
    02) Semicircle Radius (R) = (4 * sqrt(2)) lin un
    03) Semicircle Area (SA) = (R^2 * Pi) / 2 ; SA = 32Pi sq un ; SA ~ 100,53 sq un
    04) AB = BC = 8 lin un
    05) Circular Segment Area (CSA) = [(8^2/2) * (Pi/2 - sin(Pi/2)] ; CSA = 32 * (Pi - 1) ; CSA = (32Pi - 32) sq un ; CSA ~ 68,53 sq un
    06) Purple Shaded Area (PSA) = [32Pi - (32Pi - 32)] sq un ; PSA = 32Pi - 32Pi + 32 ; PSA = 32 sq un
    Therefore,
    MY ANSWER IS:
    Beyond any reasonable doubt the Purple Shaded Area is equal to 32 Square Units.

  • @NYlivinginTN
    @NYlivinginTN 6 днів тому

    ua-cam.com/video/NGsuCPFjStI/v-deo.htmlsi=n3If6L01GPvrGK2y

  • @mohanramachandran4550
    @mohanramachandran4550 6 днів тому

    (22÷(7*2)×(4√(2)×4√(2))) -
    ((22÷(4*7)×(8×8)-(8×4))=
    31.99999999999998
    =32