그래프에서 삼각형의 면적을 구하시오, 그래프 꿰뚫기!

Поділитися
Вставка
  • Опубліковано 9 лис 2024

КОМЕНТАРІ • 95

  • @quebonmath
    @quebonmath  2 роки тому +7

    놀면서❤️수학만점~ 인공지능수학 깨봉!
    #그래프 #방정식 #포물선 #깨봉수학 #도형
    [깨봉수학 바로가기]▶ bit.ly/3t3VG7a
    [깨봉 유튜브 구독하기] ▶bit.ly/36blgM9
    [카카오톡 상담하기] ▶ bit.ly/3dgDA7F

    • @jo4745ify
      @jo4745ify 2 роки тому +1

      안녕하세요 깨봉박사님!

    • @하야-d1t
      @하야-d1t Рік тому

      고마워요.

  • @slee4502
    @slee4502 2 роки тому +18

    모든 중고등학생들한테 가장 유용한 유튜브 채널이라고 생각합니다.

  • @mathdetectivej9764
    @mathdetectivej9764 2 роки тому +11

    대단히 유익한 내용입니다. 저는 쌍곡선의 개념으로만 복잡한 수식을 통해 증명을 했는데
    깨봉님은 간단히 푸셨군요.

  • @박병주-d2l
    @박병주-d2l 2 роки тому +9

    K=3인 방정식에서 x=y인 점에서 접선아래면적도 같으니까 x제곱=3 즉 x=y=루트3인 점에서 아래면적도 같습니다 거기서 아래면적 루트3곱하기 루트3의 두배 즉 6이 나옵니다ᆢ캬~쉽네요.감사합니다

  • @일상회복-v3f
    @일상회복-v3f 2 роки тому +1

    평행이니까 2배!!! 정확히 이해했습니다! 정말 기가막힙니다!^^ 신세계~~~^^♡♡♡ 고맙습니다 박사님^^

  • @bleej1939
    @bleej1939 2 роки тому +3

    수학적인 통찰력이 매번 감탄합니다 저도 이런 눈을 가지고 싶네요!

  • @park5532009
    @park5532009 2 роки тому +1

    깨봉 박사님 건강하십시요

  • @양정환-j3o
    @양정환-j3o 2 роки тому +2

    접점에서 x축, y축에 수선을 내리고, 원점과 연결하면 네개의 삼각형이 합동입니다.

  • @hyune_e
    @hyune_e 2 роки тому +6

    이미 dy/dx에 극한의 개념이 들어가있지만 중학생 수준에선 x가 분명히 작아졌는데 평행이라는게 이해가 안될 것 같아요 극한과 미분을 배우면 바로 이해가 될듯
    근데 영상들 다 보고있는데 정말 좋네요 내용들이 하나같이 ㅋㅋㅋㅋㅋ

  • @ztzeros
    @ztzeros 2 роки тому +4

    항상 '이게 또 무슨 약팔이냐...'하고 들어와서 '오옷 이런 명약이 있다니!' 하고 놀라고 갑니다. xy=3 직사각형, y=x직선에 대하여 선대칭...아 ㅋㄱㄱㅋㅋ 소생 수식만 읽을 줄 알았지 아무것도 모르고 있었습니다.

  • @lianmeikay7439
    @lianmeikay7439 Рік тому

    정말 재밌게 잘 배우고 갑니다. 깨봉 식구들 고마워요~~~

  • @Autumn-q6m
    @Autumn-q6m 2 роки тому +1

    직관적으로 만나는 점이 직각 이등변삼각형의 밑변 중간점인거같은데
    그럼 y축만나는점 3, x축만나는점 4이므로 삼각형 넓이는 6

  • @phoebuslipton9565
    @phoebuslipton9565 Рік тому +1

    설명이 산뜻하네.

  • @educarch2
    @educarch2 2 роки тому

    정말 최고이십니다!

  • @seongminkim1199
    @seongminkim1199 2 роки тому +3

    저도 유리함수 기본형을 xy=k형태로 봅니다.
    그래서 이 문제를 봤을때 xy=1의 (1,1)부터 출발했습니다.
    그러면 문제의 상황 xy=3에서 (2, 3/2)라는 점의 직사각형은
    xy=1의 (1,1)을 y로 2배 x로 3/2배 늘린 그림이랑 똑같겠다라는 생각으로
    xy=1인 그래프에서 (1,1)에서 접선을 그려서 삼각형을 만들면 넓이가 2입니다.
    그걸 세로로 2배 가로로 3/2배 한 삼각형이되겠다 생각들어서 6으로 구했습니다.
    영상에서는 내용이 미분으로 이어질 수 있는 방법으로 가는 것도 좋아보여요

  • @youthanother6206
    @youthanother6206 2 роки тому +4

    앞으로도 수능관련 내용들 많이 다뤄주세요! 예를 들면 지수함수 로그함수요!

  • @lianmeikay7439
    @lianmeikay7439 Рік тому

    와! 몫의 미분법이 이렇게 되는 거였군요!! 오늘도 잘 배우고 갑니다~ 깨봉 고마워요~ (4회차 시청 후 깨달음 ㅋㅋㅋ)

  • @PictureDiary_Park
    @PictureDiary_Park 2 роки тому +2

    구하고자 하는 삼각형의 면적
    xy = 3 이고, xy 사각형외의 삼각형 나머지 면적은 xy사각형의 면적과 같으므로 6

    • @dytpq09
      @dytpq09 2 роки тому

      궁금해서 그러는데 xy 사각형을 제외한 나머지 면적이 xy면적이랑 같다는건 어떻게 알아요?

    • @감나빗-26
      @감나빗-26 2 роки тому +2

      논리가 약간 빈약한데 그걸 알려면 구하고자하는 면적을 분할한 삼각형이 닮음이라는 걸 알아야 함 일단 면적을 구하고자하는 삼각형은 직각삼각형이고 그 안에 2,3/2를 포함하는 직사각형을 그려보면 직각삼각형 두 개가 새로 만들어지는데 닮음임 닮음인데 직사각형을 분할한 직각삼각형과 대응변의 길이가 같음 합동임

  • @user-ig5y0t9lcg
    @user-ig5y0t9lcg 2 роки тому +2

    와 이게 보자마자 풀리는 문제였다니

  • @hwangi.1922
    @hwangi.1922 2 роки тому

    항상 잘보고 있습니다.

  • @greatmaster369
    @greatmaster369 Рік тому

    최고~

  • @userjakgun
    @userjakgun 2 роки тому +1

    너무 유익해요 !!!!! 현 고3이 깨알같이 깨닫고갑니다

  • @leejohn4853
    @leejohn4853 Рік тому

    그냥 보자마자 직관으로 6 아닐까 싶었는데..
    설명을 깔끔하게 못하겠네요.
    주어진 좌표값(2, 3/2)에서의 직사각형의 면적이 3이고
    그 직사각형 오른쪽과 위쪽에 있는 삼각형은 항상 합동일 것 같다고 생각했습니다.
    그래서 삼각형 너비는 3의 두배인 6.
    그런대 맨 마지막 두 삼각형이 항상 합동인가? 라는 부분을 깔끔하게 설명 못하겠더라구요. ㅡㅜ
    그래서 다른 좌표 (1,3)을 넣고 그리니 그나마 보기 편하긴 한데 증명을 못하겠었습니다.ㅡㅜ
    접선의 중심이 접점인 걸 이해 못하고 있어서.. 생각 좀 더 해보겠습니다.

  • @Snowflake_tv
    @Snowflake_tv 2 роки тому +1

    1:40 그럼 반비례그래프의 1사분면에 접하는 직선은 항상 접선을 기준으로 1사분면 안에서 2등분되는거에요? 저게 항상 중간점인거에요? 1차함수는 어디서나 기울기가 같다는 정보로 인해서??
    저 저부분, 접점이 x축을 기준으로 절반으로 구역을 나눈다는게 이해가 안가서 제 나름 이해해본게 위에 적은 부분이거든요?

    • @Snowflake_tv
      @Snowflake_tv 2 роки тому

      8:30에 해설이 있구나 ㅋㅋ
      그리고 폰에서도 광고 나오넹 ㅠㅠ

  • @Jihoon_piano
    @Jihoon_piano 2 роки тому +2

    빗변의 중점이 항상 접점이니까 6

  • @yudaegam
    @yudaegam 2 роки тому

    미친 통찰력 대박

  • @alchemist_23
    @alchemist_23 2 роки тому +2

    아.. 좋은데 내용이.. 대학 때 공부를 하고 다시봐서 이해가 되는건지 처음부터 저렇게 공부해도 잘 보일런지 잘모르겠어요 ㅋㅋ큐ㅠ 공부잘하고 갑니다

  • @강병관-j4z
    @강병관-j4z Рік тому

    선생님 제가 이해력이 좀 부족해서 질문드려요ㅠ 7분45초 부분에 (X x dy)라고 말씀하신 사각형의 넓이가 {(X-dx) x dy}가 아닌지요? 미세 길이라서 dx감소분은 무시가 가능하다는 의미인지 명확히 이해아 안가서 질문드립니다

    • @bossmyung153
      @bossmyung153 Рік тому

      순간의 변화량은 크기를 무시할 수 있다고 다른 미분 관련 영상에 나왔던 것으로 기억합니다.

  • @레몽레인
    @레몽레인 5 місяців тому

    아 진짜 천재 입니다
    그런 뜻이 있었네요
    ㅎㅎㅎ
    90학번입니다

  • @DG_Seo
    @DG_Seo 2 роки тому +3

    두 직사각형이 서로 닮음이고 대각선이 서로 평행하다는 것으로 어떻게 접점이 접선의 중점이 됨을 증명할수 있나요?

    • @a63g74
      @a63g74 2 роки тому +1

      xy=3 을 만족하는 임의의 (x,y) 점에서, 위의 닮은 사각형을 이용한 중점이 성립했으니 모든 점에서 같은이유로 중점이 된다는게 아닐까요.

    • @sy-vv4vo
      @sy-vv4vo 2 роки тому +4

      직사각형을 파란 직선(대각선)을 따라 두 삼각형으로 쪼개면 합동이므로 높이가 같습니다.
      따라서 원점에서 파란 선과 노란 선까지의 거리가 1:2가 되므로 xy축과 파란선, xy축과 노란선이 이루는 삼각형은 1:2닮음이므로 파란 선의 절편은 노란 선의 절편의 절반입니다.
      그러면 직사각형과 파란 선으로 나누어지는 4개의 삼각형이 모두 합동이므로 꼭짓점은 노란 선의 중점이 됩니다.

    • @youngmzman
      @youngmzman Рік тому

      @@sy-vv4vo 와 이거보고 알았습니다 감사합니다

    • @Kkim0830
      @Kkim0830 6 місяців тому

      @@sy-vv4vo 저도 질문 주신분처럼 이 대목에서 막혔는데요. 정사각형이 아닌 직사각형이라 접점이 접선의 중심이 될 수 있는지가 좀 와닿지가 않네요

  • @Haje-i8d
    @Haje-i8d 2 роки тому

    6:44 저기서 평행까지 유도된게 신기하네요

  • @Uyrnaes4202
    @Uyrnaes4202 Рік тому

    내용을 잘 보니까 dx는 항상 양인가 보군요. 전 dx 안에 마이너스가 포함되어 있을 수 있단 생각을 했었는데 그게 아니군요. d와 D(그리스 문자 델타)는 다르군요.

  • @이재준-f9y3i
    @이재준-f9y3i 2 роки тому

    x=2일 때 k=3
    결국 y=3/x

  • @Snowflake_tv
    @Snowflake_tv 2 роки тому

    8:21 나 이제 이거 닮은 거 이해했다 ㅠㅠ... 난 이해가 느린 편이네 ㅠㅠㅠㅠ

  • @윤이-d5v
    @윤이-d5v 2 роки тому

    꿰뚤자아!~~~~😘

  • @이제동-b9q
    @이제동-b9q 2 роки тому +9

    xy=3을 사각형으로 이해하는 거 충격적이네.... 진짜 수학이구나 이게

    • @SARMAKER706
      @SARMAKER706 2 роки тому +3

      중1 수학에서 나오는 내용입니다.

    • @수안정-y6f
      @수안정-y6f Рік тому

      @@SARMAKER706 응 아님~~~

  • @박수상-s7d
    @박수상-s7d Рік тому

    7분쯤에 면적이 모두 3이라는건 오차를 무시해서 3이라는 건가요? 쌍곡선위의 점이 아니라 접선위의 점인데 왜 면적이 3이 되는지 의아합니다

  • @김진욱-y4y8k
    @김진욱-y4y8k 2 роки тому +7

    영상 잘 보고 있습니다 ^^ 혹시 8분 10초의 영역표시 잘못된 것은 아닐지요?

    • @PictureDiary_Park
      @PictureDiary_Park 2 роки тому +2

      그렇네요. ㅎ

    • @Ucjwc
      @Ucjwc 2 роки тому

      제대로 표시한거 맞는거 같은데요

    • @a63g74
      @a63g74 2 роки тому +1

      dy*(x-dx)=y*dx 이걸 x-dx 대신 x 로 하셨으니 dx*dy는 의미없다고 보신것같고, 그러면 사각형 닮음도 누가되든 차이가 거의 없다는 전제로 설명하시는 것 같은데 . 궁금하네요.

    • @popt8483
      @popt8483 2 роки тому

      @@a63g74 x-dx=x 입니다 dx는 값이 없다고 생각하시면 되요 무수히 작기때문에

  • @chattybeak
    @chattybeak 2 роки тому

    8:14 에서 서로 다른 사각형의 x y를 가져왔는데 왜 이 식이 성립하는건지 궁금합니다

  • @유스텔라-p1e
    @유스텔라-p1e 2 роки тому

    아이가 학교에서 부등식에 대해 배우는데 부등식도 해주실 수 있을까요?

  • @sorbine
    @sorbine 6 місяців тому

    형님 잘 지내시죠?
    ....
    친해지고 싶다...

  • @꿀맛-g7q
    @꿀맛-g7q 2 роки тому

    개꿀잼이네

  • @Liz-td6kb
    @Liz-td6kb 2 роки тому

    헉 그렇군요.

  • @mathsciencefancier
    @mathsciencefancier 2 роки тому

    삼격형!

  • @다시일어서자-q4j
    @다시일어서자-q4j 8 місяців тому

    이렇게 공부했으면 훨씬 쉽게 원리를 깨우치며 즐겁게 수험생활 했을텐데

  • @kkebi5000
    @kkebi5000 Рік тому

    고등학교때부터 내가 수학을 못했는데.. 선생을 잘못만난 이유였구나ㅠㅠ

  • @trigonometrygenius
    @trigonometrygenius Рік тому

    요즘 코로나가 유행이네😂

  • @조은호-f4o
    @조은호-f4o 2 роки тому

    혹시 이 곡선이 포물선인가요?

    • @egumonina6608
      @egumonina6608 2 роки тому +2

      아니요 y=k/x의 그래프는 쌍곡선을 45도 회전시킨 거에요

    • @조은호-f4o
      @조은호-f4o 2 роки тому

      그러니까요

    • @sangminlee5581
      @sangminlee5581 2 роки тому

      @@조은호-f4o 포물선과 쌍곡선의 정의가 다릅니다. 분수함수는 포물선이 아닙니다. 이차함수가 일반적인 포물선형태입니다. 분수함수에는 이차항이 안들어가죠? 포물선이 아닙니다

    • @조은호-f4o
      @조은호-f4o 2 роки тому

      @@sangminlee5581 아 넵 알고 있습니다

    • @조은호-f4o
      @조은호-f4o 2 роки тому

      @@sangminlee5581 자세한 설명 감사드립니다

  • @jiho71410
    @jiho71410 2 роки тому +2

    7:00 에서 왜 넓이가 3이 되는지 모르겠습니다
    접선위의 한점이므로 그래프위의 한점은 아닐꺼고... 아무튼 저기부터 이해가 안됩니다
    도와주세요

    • @saliw3354
      @saliw3354 2 роки тому

      저기서는 변화를 극한으로 보내 아주 작은 dx dy 접선을 구한 것이기 때문에 그래프 위 한 점으로 근사해 볼 수 있습니다 구체적으로는 ∆x, ∆y를 0으로 보내서 dy/dx를 구하는 거죠

  • @79and84
    @79and84 2 роки тому

    이게 진짜 5초만에 되는건가요?
    진짜 궁금해서 물어봅니다

  • @heun_math
    @heun_math Рік тому

    많은 공부가 되었습니다.
    8분 35초쯤에 직사각형의 닮은 그림은 잘못된 것 같습니다. 직사각형 dx*dy 와 닮은 도형은 직사각형 x*y인데 그림에선 파란색 직사각형이 (x+dx)*y로 되어 있습니다.
    확인 부탁드립니다.

    • @eidjdhxxjwodc
      @eidjdhxxjwodc Рік тому +1

      파란색 직사각형 xy 맞아요. 가장 처음에 잡은 직사각형이니까요.

  • @jinjoolee3913
    @jinjoolee3913 2 роки тому

    이런걸 음함수미분이라고 할까요?;

    • @일렉트릭기타
      @일렉트릭기타 2 роки тому

      양함수인데요

    • @228V1
      @228V1 2 роки тому +1

      -y/x에서 (2,3/2)를 바로 넣었으면 음함수미분법을 쓴거하고도 같죠

  • @jo4745ify
    @jo4745ify 2 роки тому +2

    아싸 좋아요 1등!

  • @insookim3640
    @insookim3640 Рік тому

    그걸 그렇게 풀어? 날샌다. 그냥 2곱하기2분의3곱하기2다. 딱보면 알지.

  • @Snowflake_tv
    @Snowflake_tv 2 роки тому

    8:10 아니 이게 서로 닮았다고 누가 알아채 ㄷㄷㄷㄷ

  • @happydays8734
    @happydays8734 2 роки тому

    호울리 쓋!!!!
    xy=3 이라고????와 씨 진짜 소름돋자나

  • @martin_shin
    @martin_shin 2 роки тому +1

    현실판 이상한 나라의 수학자시네요

  • @bonghusbandu5314
    @bonghusbandu5314 2 роки тому

    그래서 5초 걸린건가요 ㅋㅋ

  • @uuu12345cc
    @uuu12345cc Рік тому

    나 이거 일차함수로 풀음

    • @하야-d1t
      @하야-d1t Рік тому

      넌 바보라서 ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 주소 모르죠?
      메롱이죠?

    • @하야-d1t
      @하야-d1t Рік тому

      딱 좋아요

    • @하야-d1t
      @하야-d1t Рік тому

      ㅇㄴㄹㄴㅇㅇㄴㄴㄹㄴㅇ살ㄴㄹㅇㄹㄴㅁㅇㄹㄴㄹ려 ㄴㅇㅁㄹㅇㄹㄴㄻㄴㄴ줘 ㅇㄴㄴㄹㄴㅁㅇㄹㅇㄴㄹㅇㄴㄻㅇㄴ

    • @하야-d1t
      @하야-d1t Рік тому

      왜오타?

  • @나루토-b7y
    @나루토-b7y 2 роки тому +1

    훨씬더 어렵게 풀고있구만 ㅋㅋㅋㅋ

    • @dgkzk
      @dgkzk 2 роки тому +1

      설명하느라 그래서 그런거지 요약하면
      xy=3 그래프 위에서 어떤점을 잡아도 그 접선이 이루는 넓이는 3*2=6으로 암산 가능함.
      원래 풀이는 모든 점에 대해 항상 미분식을 써야 하고요.

    • @창석송-t7w
      @창석송-t7w 2 роки тому

      뭐래

    • @하야-d1t
      @하야-d1t Рік тому

      왜? 넌
      바보라서

    • @하야-d1t
      @하야-d1t Рік тому

      @@창석송-t7w ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

    • @ywn1999
      @ywn1999 Рік тому

      답은 어렵게 찾은건 맞는데... 문제는 저렇게 아는게 진짜 아는거라는거... 대수적으로 그냥 넣어서 기계적으로 돌린게 아니잖아 머리를 쓰는게 핵심 - 저게 반복되면 저런 통찰에 도달하는거고

  • @tongki72
    @tongki72 11 місяців тому

    30년전에도 고교수학 선생님들이 왜 저런 분수함수 미분 나오는지 설명했습니다. 그러고 나서 공식처럼 암기하라고 합니다. 대학 수학과처럼 이론을 증명하고 하는게 아니고 고교는 문제 풀이에 급급해서요.