A nice Math Olympiad Algebra Equation. Can you dare solve this ? Find the Value of x ?

Поділитися
Вставка
  • Опубліковано 24 січ 2025

КОМЕНТАРІ •

  • @shannonmcdonald7584
    @shannonmcdonald7584 8 місяців тому +1

    Your videos help me to think differently about equations. Im learning a lot. Thank you so much.

  • @BabiPatnaik-g5b
    @BabiPatnaik-g5b 10 місяців тому +1

    Very good solution.many many thanks sir.❤

  • @اقرء
    @اقرء 10 місяців тому +2

    Good

  • @abdrrahmanaaboun4168
    @abdrrahmanaaboun4168 10 місяців тому +1

    Very good work

  • @guyhoghton399
    @guyhoghton399 10 місяців тому +2

    Good solution, but in this case it seems easier just to subtract the terms, cross multiply, expand and simplify.
    We have _(⁽ˣ⁺¹⁾/ₓ)² - (⁽ˣ⁺¹⁾/₍ₓ₋₁₎)² = 1_
    ⇒ _(x + 1)²[⅟ₓ² - ⅟₍ₓ₋₁₎²] = 1_
    ⇒ _(x + 1)²[(x - 1)² - x²]/[x²(x - 1)²] = 1_
    ⇒ _(x + 1)²(1 - 2x) = x²(x - 1)²_
    ⇒ _-2x³ - 3x² + 1 = x⁴ - 2x³ + x²_
    ⇒ _(x²)² + 4x² - 1 = 0_
    ⇒ _x² = -2 ± √5_
    ⇒ *_x = ±√(-2 ±√5)_*

  • @NadiehFan
    @NadiehFan 10 місяців тому +1

    The equation to solve is
    ((x + 1)/x)² − ((x + 1)/(x − 1))² = 1
    Start by multiplying both sides by x²(x − 1)² to get rid of the fractions and we have
    (x + 1)²(x − 1)² − (x + 1)²x² = x²(x − 1)²
    (x + 1)²(x − 1)² = (x + 1)²x² + x²(x − 1)²
    (x² − 1)² = x²((x + 1)² + (x − 1)²)
    (x² − 1)² = x²(2x² + 2)
    x⁴ − 2x² + 1 = 2x⁴ + 2x²
    x⁴ + 4x² − 1 = 0
    x² = −2 + √5 ⋁ x² = −2 − √5
    x = √(−2 + √5) ⋁ x = −√(−2 + √5) ⋁ x = i√(2 + √5) ⋁ x = −i√(2 + √5)

    • @superacademy247
      @superacademy247  10 місяців тому

      It's stunning how you break down this gigantic equation to simple quadratic of fourth degree(quartic equation). Thanks 👍💯 for your input

  • @anestismoutafidis4575
    @anestismoutafidis4575 7 місяців тому

    If I put for x=-0,5, in the equation, then the solution of the equation is 1,11'. For this I try with the number -0,485 and put it for x. Then the solution of the equation is:
    [(-0,485+1)^2/-0,485^2] - [(-0,485+1)^2/(-0,485-1)^2 =1,006 x=-0,485

  • @ArwindSah
    @ArwindSah 10 місяців тому +1

    Easy way to solve this equation
    Equation has solution for x not equal to 0 or 1
    (X+1)^2/((1/X^2-1/(X-1)^2) =1
    Or,
    ( (X+1)^2)((X-1)^2-x^2))/((X^2)(X-1)^2) =1
    Or,
    ((X+1)^2)(X-1+X)(X-1-X) =(X^2)(X-1)^2
    Or,
    (X^2+2X+1)(2X-1)(-1) =(X^2)(X^2-2X+1)
    Or,
    (X^2+2X+1)(1-2X) =X^4-2X^3+X^2
    Or,
    X^2+2X+1-2X^3-4X^2-2X = X^4-2X^3+X^2
    Simplifying we get
    X^4+4X^2-1 =0
    Put X^2=t
    Then X^4=t^2
    Equation t^2+4t-1=0
    t=-2+√5 or t = -2-√5
    Case 1
    X^2=-2+√5
    X1= √(-2+√5) or
    X2 = -√(-2+√5)
    Case 2
    X^2= -2-√5 =(-1)(2+√5)
    X3=i√(2+√5) or
    X4= -i√(2+√5)

  • @user-u3e3kx5m6pg
    @user-u3e3kx5m6pg 9 місяців тому +1

    Use ((x+1)/x)² =
    =((x+1)/(x-1))²+1
    =2(x²+1)/(x-1)²
    Simplify it and get
    (x² -1)² =2x²(x²+1) =>
    X⁴+4x²-1=0 => x²=-2±5½. So x=±(-2+5½)½, ±(2+5½)½ i.

  • @walterwen2975
    @walterwen2975 10 місяців тому +1

    A nice Math Olympiad Algebra Equation:
    [(x + 1)/x]² - [(x + 1)/(x - 1)² = 1; x = ?
    x ≠ 0, x ≠ 1; (x + 1)²[(x - 1)² - x²]/[(x²)(x - 1)²] = 1
    [(x + 1)²(1 - 2x)]/[(x²)(x - 1)²] = (1 - 3x² - 2x³)/(x⁴ - 2x³ + x²) = 1
    1 - 3x² - 2x³ = x⁴ - 2x³ + x², x⁴ + 4x² - 1 = 0, (x² + 2)² = 5 = (√5)²
    x² = - 2 + √5 or x² = - 2 - √5 = - (2 + √5); Imaginary value roots
    x² = - 2 + √5 = 0.236; x = ± √(- 2 + √5) = ± √0.236 = ± 0.486
    x² = - (2 + √5) = - 4.236; x = ± i√(2 + √5) = ± i√4.236 = ± 2.058i
    The calculation was achieved on a smartphone with a standard calculator app
    Answer check:
    [(x + 1)/x]² - [(x + 1)/(x - 1)]² = (1 - 3x² - 2x³)/(x⁴ - 2x³ + x²)
    x² = - 2 ± √5: x⁴ + 4x² - 1 = 0, x⁴ = 1 - 4x²
    (1 - 3x² - 2x³)/(x⁴ - 2x³ + x²) = (1 - 3x² - 2x³)/(1 - 4x² - 2x³ + x²)
    = (1 - 3x² - 2x³)/(1 - 3x² - 2x³) = 1; Confirmed
    Final answer:
    x = √(- 2 + √5) = 0.486, x = - √(- 2 + √5) = - 0.486
    x = i√(2 + √5) = 2.058i or x = - i√(2 + √5) = - 2.058i