Trajectory of a projectile with linear drag

Поділитися
Вставка
  • Опубліковано 4 лис 2024

КОМЕНТАРІ • 76

  • @luiginotcool
    @luiginotcool 3 роки тому +24

    Wow adding drag really does make the whole situation much more complex. I’ve just finished second order differential equations in school and it’s really interesting to see them used inside a problem not just by themselves. High quality video as always!

    • @DrBenYelverton
      @DrBenYelverton  3 роки тому +4

      Thanks. Since acceleration is the second derivative of position with respect to time, Newton's second law itself is really a second order ODE. So if you continue studying Physics you'll be seeing a lot of them in context!

    • @EgoTeach
      @EgoTeach Рік тому +2

      @@DrBenYelverton I'm going crazy

  • @igorzomb
    @igorzomb 2 роки тому +6

    this is also totally consistent with the previous video without the drag, i.e. if b is nearly zero... then the Taylor expansion of ln(1-ax) will eliminate the extra linear term and the second term becomes the second term in the original formula without the drag! Very cool to see this!

    • @DrBenYelverton
      @DrBenYelverton  2 роки тому +1

      Indeed, satisfying to see and also a useful check on the result!

  • @masterdynamo6457
    @masterdynamo6457 2 роки тому +3

    This is amazingly instructive. Thank you so much for sharing!

  • @aranyak1881
    @aranyak1881 2 роки тому +3

    Mate, thanks so much, I needed to understand this derivation for my project and it was explained really clearly step by step!

    • @DrBenYelverton
      @DrBenYelverton  2 роки тому +2

      Excellent, I'm happy to hear that it helped!

  • @hassanshoukair677
    @hassanshoukair677 Рік тому +2

    Thank you very much, this tutorial was very helpful for my internal assessment. Any clues on how to calculate the constant "b" or average values for this constant?
    Thank you!

    • @DrBenYelverton
      @DrBenYelverton  Рік тому

      I'm glad it was helpful. Perhaps you could calculate a value for b using Stokes' law and the viscosity of air - this would work for a sphere moving at low velocity, which won't really be the case for a typical projectile but will at least give an appropriate order of magnitude estimate. In reality the drag force experienced by a projectile is more likely to be proportional to v², but that case becomes impossible to solve analytically.

  • @soojandie
    @soojandie 11 місяців тому +2

    Great video! Do you think it would be possible to add the effect of wind using F=lw^2 (where w - constant wind velocity colinear with horizontal velocity, l - coefficient of the resistance of the medium with wind) into the equation?

    • @DrBenYelverton
      @DrBenYelverton  11 місяців тому

      Thanks! Yes, the equation of motion for x would have a right hand side of ±F/m instead of zero, where the sign depends on the direction of the wind. If F is constant then the solution for the x equation would mostly be the same, but with the addition of a particular integral term, which you can work out using the same way we handled the -g term in the y equation. If the wind is purely horizontal then there is no change to the y equation.

    • @soojandie
      @soojandie 11 місяців тому

      @@DrBenYelverton Just curious, how would you go about removing the t from the equation of motion for x to form the cartesian equation, given that it appears twice in both x and y equations of motion? Would you say the taylor series has any use in solving this (such as to expand the expression e−bm/t), or the lambert function?

    • @DrBenYelverton
      @DrBenYelverton  11 місяців тому

      @@soojandie The problem with Taylor expanding is that even if b is small, bt/m won't be small when t is large. I suppose you could do this to get an approximate trajectory if the total time of flight is known to be small, though (i.e. much less than m/b). The Lambert W function may be helpful but I'm not really familiar with it, probably worth researching if you're interested!

  • @OwenZhang07
    @OwenZhang07 Рік тому +1

    This is brilliant! Can you make a video about how the spin of an object affect it trajectory of projectile?

    • @DrBenYelverton
      @DrBenYelverton  Рік тому +3

      That's an interesting topic - I don't think I've ever actually worked through the calculation for a rotating projectile, but in principle it should be possible starting from an expression for the Magnus force. I will have a go when I get a chance and see if it can be solved analytically!

  • @남윤규-h1f
    @남윤규-h1f Рік тому +2

    For 0:20, I remember the drag force should be proportional to the the square of its velocity which gives us F = bv². As velocity, v constantly changes can't be included in the constant, b. May I know what I'm missing? Or could you how to solve the equation will be if we use F = bv²?

    • @DrBenYelverton
      @DrBenYelverton  Рік тому +1

      Indeed, quadratic drag would be a more realistic model for a typical projectile moving through air, unless perhaps the projectile is very small or launched with a low speed. However, the equivalent problem with quadratic drag is not solvable analytically, other than in 1 dimension (i.e. if the projectile is launched directly upwards and falls back down along the same line).

    • @katkollare809
      @katkollare809 Рік тому +2

      @@DrBenYelverton Amazing video, very informative and straight to the point. Yet I still wonder how you'd solve the quadratic drag problem in one dimension. What function would you choose so that the first derivative is linearly dependent with the square of the second derivative? I'm very curious and would appreciate if you could give a hint or solve this, please

    • @DrBenYelverton
      @DrBenYelverton  Рік тому +2

      @@katkollare809 Thanks! I don't remember the solution off the top of my head, but the approach is a little different to what I did in this video - instead of guessing a sensible solution for x and substituting it into the equation of motion, it's much easier to integrate twice, i.e. first solve for v and then get x from there. Since quite a few people have asked about this I will probably end up making a video showing the full solution soon.

  • @ok-pj2bj
    @ok-pj2bj 11 місяців тому +1

    if I wanted to calculate the horizontal displacement of the projectile, how would I calculate the value of b? The resistance coefficient? Also do you think this model is sufficient for a small projectile like a nerf draft? Since you base the model on the fact that F drag is proportional to velocity so the equation is analytically solvable? And would there perhaps be any way to mathematically evaluate this model for a project?

    • @DrBenYelverton
      @DrBenYelverton  11 місяців тому +1

      You can quantify how appropriate or inappropriate the linear drag model is by calculating the Reynolds number; you'll need to look this up if you haven't come across it before. I suspect that quadratic drag is a better model for your case though. If you use the linear drag model, you could come up with an order of magnitude value for b using Stokes' law, technically this only applies for a sphere but it would be a starting point. You can do some research and try to find out if anyone has come up with an appropriate value of b for the shape of your projectile, either numerically or experimentally.

    • @ok-pj2bj
      @ok-pj2bj 11 місяців тому +1

      @@DrBenYelverton Alright, yes thank you so much, I was actually going to do three conditions, 1 without drag 2 linear drag 3 quadratic drag. But yes I will take your advice into consideration.

  • @noel154
    @noel154 Рік тому +1

    Isn't the drag force proportional to the square of the velocity instead of just the velocity? (taking into account the drag equation for fluids) (thanks for the video! You've made it really simple to understand)

    • @DrBenYelverton
      @DrBenYelverton  Рік тому

      Thanks for watching, glad it was helpful! Yes, quadratic drag would be a better model for a typical projectile, but the problem then becomes unsolvable analytically, other than the 1D case where the projectile moves straight up and back down along the same straight line.

    • @dalehinds8008
      @dalehinds8008 Рік тому

      If you square the components of the velocity vector, the system remains uncoupled and the two equations can still be solved in closed form. Or is that illegal?@@DrBenYelverton

  • @Phenom5
    @Phenom5 Рік тому +1

    Thank you !!! Just one question, what is Uy equal to? Is it Vo*sin(phi) with Vo = initial speed and phi the angle ?

  • @derrickbecker9856
    @derrickbecker9856 2 роки тому +1

    Proportional to own velocity would be great for low Reynolds numbers like in viscous fluids or small projectiles. But proportional to velocity squared is more realistic for golf balls and baseballs and bullets etc. so if we integrate each independent directional equation, we should have velocity components for both x and y for a given time. And if you integrate again you get distance
    By time. If you solve for time on the x equation and plug into time for the y equation, you get dy vs dx for the trajectory profile. If you solve for dx and then derive dx/dtheta you can find optimal angle for a given velocity. Yes?

    • @DrBenYelverton
      @DrBenYelverton  2 роки тому +1

      In principle that would be the correct method, but in general it's not possible to solve analytically for x(t) and y(t) in the case of quadratic drag. The reason is that the square of the speed is v² = v_x² + v_y², so if the drag force is proportional to v² then the equations of motion in x and y are no longer independent.

    • @derrickbecker9856
      @derrickbecker9856 2 роки тому

      @@DrBenYelverton how do you go about plotting the trajectory then? If you do it in excel with a 0.01 time increment, can’t you correctly plot the curve as everything adjusts?

    • @DrBenYelverton
      @DrBenYelverton  2 роки тому +1

      Sure, it won't be exact but you can integrate the equations of motion numerically and plot the results. I'd probably use python/scipy for this but Excel should work too.

    • @derrickbecker9856
      @derrickbecker9856 2 роки тому +1

      @@DrBenYelverton thanks for the replies. Could you do a video on solving
      a bar being lifted up with chains attached underneath? Like F -g(M+3x)=m d2x/dt2 + dm/dt dx/dt ?

    • @DrBenYelverton
      @DrBenYelverton  2 роки тому

      Actually, one of the videos I've been meaning to make for a while is on a problem involving a ball thrown into the air with a chain attached, which sounds like a very similar system but without the extra F term in your equation. Out of interest, did you come up with the idea or did you come across it somewhere else?

  • @melon._..
    @melon._.. 9 місяців тому

    Wow, amazing video. Just a query, is b the drag coefficient?

    • @DrBenYelverton
      @DrBenYelverton  9 місяців тому +2

      Thanks! No, b is the drag force per unit velocity, while the drag coefficient is usually defined in a different way. Wikipedia has an article on the drag coefficient that you might want to refer to.

  • @djionzir
    @djionzir 5 місяців тому

    Hello, for the value of x, why do we utilise both values of lambda? Sorry if its a bad question.

  • @andypandy6063
    @andypandy6063 8 місяців тому

    Very nice.

  • @Mark-se6nw
    @Mark-se6nw Рік тому +1

    How is it that the equation doesn't include an angle? Since wouldn't the angle of the projectile effect it's trajectory?

    • @DrBenYelverton
      @DrBenYelverton  Рік тому +3

      If the initial speed is u and the launch angle is θ, then uₓ = ucosθ and uᵧ = usinθ. So the equation does depend on θ implicitly, via the components uₓ and uᵧ.

  • @hashy4940
    @hashy4940 2 роки тому

    I was looking to make a ballistics program in a game called SimpleRockets2, but I am unable to find a simpler equation to calculate the trajectory (bomb release from a plane flying horizontally). I have the distance from the plane to the target on the y-axis, the straight distance from the plane to the target (not y-axis or x-axis, but in a straight line from the plane to the target), the coefficient of drag for the bomb, an equation to calculate the ballistics coefficient and lastly, a ballistics program in the form of: x= sqrt(2v²*y/g)
    how can I introduce the coefficient of drag (0.30) into my equation without having to work with unknown variables?

  • @thegloriousquran1208
    @thegloriousquran1208 Рік тому +1

    Can we solve for the displacement?

    • @DrBenYelverton
      @DrBenYelverton  Рік тому

      The overall displacement would come from solving y = 0. Since x appears in both the linear and logarithmic terms, we can't solve for this exactly. You'd either have to do it numerically or use an approximation for the log term.

  • @robertsalazar2770
    @robertsalazar2770 5 місяців тому

    Nice.

  • @Mr-kj9cf
    @Mr-kj9cf Рік тому

    How exactly would you solve for the horizontal range of the projectile?

    • @DrBenYelverton
      @DrBenYelverton  Рік тому

      You'd need to set y = 0 and solve the resulting equation for x. Since x appears both inside and outside the logarithm, it can't be done analytically and you'd need to use numerical methods or perhaps solve it approximately using a Taylor expansion of the log term.

    • @helmutadel6391
      @helmutadel6391 11 місяців тому

      You can use Euler method, using time step, as small as possible, b is the resistance coefficient.

  • @MrFirelord
    @MrFirelord 7 місяців тому

    Thanks!

    • @DrBenYelverton
      @DrBenYelverton  7 місяців тому

      Thanks so much, I really appreciate that!

  • @tibbesnel7694
    @tibbesnel7694 8 місяців тому +1

    How could you add the angle and velocity of the previous to this equation so you don't need u_x and u_y? P.S. I'm only 13, so take it easy on me. 😉

    • @DrBenYelverton
      @DrBenYelverton  8 місяців тому

      This is pretty advanced stuff for your age! If the initial speed is u and the launch angle is θ, you can resolve the velocity into horizontal and vertical components to get uₓ = ucosθ and uᵧ = usinθ. You can then substitute these expressions into the trajectory equation to get the whole thing in terms of u and θ directly.

    • @tibbesnel7694
      @tibbesnel7694 8 місяців тому

      Thank you so much, i'm going to do some recearch about how acurate the equation is (and more importantly: how good i can replicate the specific circumstances 😅) for school.

    • @DrBenYelverton
      @DrBenYelverton  8 місяців тому

      Very nice. It's actually a more realistic model to have the drag force proportional to v², but it's impossible to solve the equations that you get for that case.

  • @c00lkitty
    @c00lkitty Рік тому

    im tryna figure out how to predict bomb paths

  • @djmicrowave6073
    @djmicrowave6073 11 місяців тому

    is it possible to explicitly calculate the time in terms of y, I'm trying to calculate the angle required to hit a target at any x and y distance, i have figured out how to do it for a target with a y distance of 0, but i cant account for the change in y height, any suggestions?

    • @DrBenYelverton
      @DrBenYelverton  11 місяців тому

      Finding t(y) is not straightforward because y(t) contains both exponential and linear terms. I have a feeling you may be able to do it using the Lambert W function but that's not something I'm particularly familiar with.

    • @djmicrowave6073
      @djmicrowave6073 11 місяців тому

      @@DrBenYelverton yeah that’s fair enough I’ve tried messing around with lambert w a bit and it’s still very confusing, what’s really annoying is lua doesn’t have a built in math function for it so I have to approximate it with my own function (what I’m doing requires me to use lua).

    • @DrBenYelverton
      @DrBenYelverton  10 місяців тому

      I see - a few people have been asking me about this, perhaps I'll have to do some research and make a video on it at some point!

    • @mgmchenry
      @mgmchenry Місяць тому

      ​@@djmicrowave6073how did your attempt work out? I come back to this problem periodically because I'd like to get a version I feel confident in before I attempt to solve for target lead

  • @introvertedavgeek8644
    @introvertedavgeek8644 Рік тому

    just help me out here: what are y(cf) and y (pi) in this calculation at 17:14?

    • @DrBenYelverton
      @DrBenYelverton  Рік тому

      They're the complementary function (CF) and particular integral (PI), respectively. In brief, the CF is the solution to the differential equation but with the right hand side set to zero, while the PI is a solution chosen to make the right hand side actually equal to -g. The full solution is a superposition of both of these.

  • @factorish
    @factorish Рік тому

    I tried to use this formula to fin but then the natural log becomes negative and doesnt work, is my data wrong?

    • @DrBenYelverton
      @DrBenYelverton  Рік тому

      If you take the limit of the x(t) equation as t becomes infinite, you find that x never exceeds muₓ/b. Therefore the argument of the log, 1 - bx/muₓ, is always positive. So if you're working with some data which give a negative argument then it sounds like it's inconsistent with this equation.

  • @tsunami870
    @tsunami870 2 роки тому

    What is lambda? And what is the relationship of it to b/m?

    • @DrBenYelverton
      @DrBenYelverton  2 роки тому

      It's just the parameter in the trial solution exp(λt) - by substituting this into the differential equation, you find that λ(λ+b/m) = 0 and therefore that 0 and -b/m are both possible values of λ. This is how we get to the solution x = A exp(0t) + B exp(-bt/m) = A + B exp(-bt/m).

    • @tsunami870
      @tsunami870 2 роки тому

      @@DrBenYelverton Thanks! Can you recommend any good resources for further learning this topic?

    • @DrBenYelverton
      @DrBenYelverton  2 роки тому

      @@tsunami870 The first couple of sections at the following link cover methods for solving this type of equation (second order ODEs) quite thoroughly: tutorial.math.lamar.edu/classes/de/introsecondorder.aspx

  • @michelezeffiro3086
    @michelezeffiro3086 6 місяців тому

    what if i try to put numbers in it and ln has an argument

    • @DrBenYelverton
      @DrBenYelverton  6 місяців тому

      That means you're plugging in a value of x that the projectile never actually reaches!

    • @michelezeffiro3086
      @michelezeffiro3086 6 місяців тому

      it does because i’ve hitted targets at that distance. 1000 meters away and 900m/s initial speed. The bullet is shooted half a degree over the x axis and the target is at y=0. the bullet bc is 0,350 in g7, wich result as a 0,255 drag for what i’ve found on the internet. maybe that’s wrong and screw off everything?

    • @mgmchenry
      @mgmchenry Місяць тому

      ​@@michelezeffiro3086if you're plugging in observational data, then if you're getting a hit, you can forget about the y component and focus on your initial velocity on the x-axis. I haven't tried yet, but I think you can calculate the correct drag if you have that initial x velocity, the distance to Target, and the time to reach the target. Or did you already find the correct drag value?

  • @NathanKura
    @NathanKura 8 місяців тому

    bro wtf im in 9th grade why tf my science teacher making me do this