By popular demand: integral of sin floor 1/x

Поділитися
Вставка
  • Опубліковано 19 гру 2024

КОМЕНТАРІ • 18

  • @ANTONIOMARTINEZ-zz4sp
    @ANTONIOMARTINEZ-zz4sp 14 годин тому +4

    In the case of "floor of sin(1/x)", a convenient way to split up the interval (0,1) should be the following: (1,1/π),(1/π,1/2π),(1/2π,1/3π), etc. So, the interval (1,1/π) and those of the forns of the form (1/2nπ,1/(2n+1)π), n ≥ 1, would have value equal to zero for the floor of sin(1/x) while the intervals of the form (1/(2n-1)π,1/2nπ), n ≥ 1, would have value equal to (-1) for the floor of sin(x) and value (-1/π)*[(1/(2n-1))-(1/2n)], n ≥ 1, for the integral of the interval. So, the result of the integrals for the intervals with non-zero value would be: (-1/π)*(1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... ). In short, this is (-1/π)*(Ln(2)). @drpeyam, please let me know whether my reasoning is correct.

  • @matei_woold_wewu
    @matei_woold_wewu 3 години тому +1

    The summations are making it sigma

  • @Mephisto707
    @Mephisto707 19 годин тому +10

    That's not the floor symbol, it's an undecided mixture of floor and ceiling!

    • @saj_f0
      @saj_f0 19 годин тому +3

      In some textbooks they use this notation.

  • @geekjokes8458
    @geekjokes8458 20 годин тому +8

    floor of sin or sin of floor?

    • @drpeyam
      @drpeyam  19 годин тому +3

      Oops hahaha 😂

  • @marcelob.5300
    @marcelob.5300 21 годину тому +7

    I love floor sins.

  • @csilval18
    @csilval18 12 годин тому +1

    Nooo. The thumbnail is wrong.
    Solved it myself, proving the integral of the floor of sin (1/x) is 0. (It's non zero in a numerable subset of the interval, so the lebesgue integral is 0). But opened the video ans the integral is different :(

  • @DihinAmarasigha-up5hf
    @DihinAmarasigha-up5hf 13 годин тому +1

    Is the answer to the integral in the thumbnail (-ln 2)/pi ?

    • @csilval18
      @csilval18 12 годин тому

      No, it's 0. It's not Reimman integrable pretty sure. But Lebesgue integration gives you 0

    • @DihinAmarasigha-up5hf
      @DihinAmarasigha-up5hf 12 годин тому

      @csilval18 but can't you just substitute 1/x = u then break up the u domain such that the floor of sin(u) either become 0 or -1 then evaluate the resulting series by some prefered method (series is a result of the 1/u^2 that you get)

    • @martinepstein9826
      @martinepstein9826 8 годин тому

      @@csilval18 If I understand correctly, the thumbnail originally said int_0^1 floor(sin(1/x)) dx. This is Riemann integrable since it has only countably many discontinuities.

  • @Happy_Abe
    @Happy_Abe 20 годин тому +2

    Which video does he calculate the cos sum?
    The one in the description is just for the sin

  • @depressedguy9467
    @depressedguy9467 20 годин тому

    Second

  • @worldnotworld
    @worldnotworld 15 годин тому

    wtf