I Simplified A Radical Expression | 3 Methods 😮

Поділитися
Вставка
  • Опубліковано 21 січ 2025

КОМЕНТАРІ • 26

  • @coreyyanofsky
    @coreyyanofsky 7 місяців тому +2

    i solved it by thinking for a bit about (√3 + √7 + 2√5)², noticing where the "extra" terms come from, and then thinking about (√3 + √7 + 2√5)(√3 + √7)

  • @msmbpc24
    @msmbpc24 3 місяці тому

    Original expression is of the type ab/(a+b). Final answer is (√7 + √3)/2

  • @broytingaravsol
    @broytingaravsol 7 місяців тому

    reckoning 5 as (√5)², that's everything

  • @roberttelarket4934
    @roberttelarket4934 7 місяців тому

    conjugate or carnagugate(a terror).

  • @mtaur4113
    @mtaur4113 7 місяців тому

    I feel like we took it for granted that the numbers were conveniently rigged up to make a hidden shortcut possible. In general, such a quotient might require a linear combination of a rational, sqrt(3), sqrt(5), sqrt(7), and any product of these. Q adjoin square roots of three primes has dimension 2^3 over Q.
    In solution 1, you saw that the numbers were super convenient because you had four equations with three variables. In solution 2, you were able to factor by grouping, which was very convenient and magical-looking. It's not clear to me how you would know in advance that the numbers are magical.

    • @SyberMath
      @SyberMath  7 місяців тому +1

      Competition type problems always have magical numbers. Some people call it ‘contrived’

    • @mtaur4113
      @mtaur4113 7 місяців тому

      @@SyberMath That's fair enough. It is what it is.

  • @emanuellandeholm5657
    @emanuellandeholm5657 7 місяців тому

    I tried the second method, because I noticed the product over sum pattern. The galaxy brain move of inverting and looking for 1/x instead did not occur to me. Facepalm! I was so close. :)

    • @SyberMath
      @SyberMath  7 місяців тому +1

      Thanks for sharing!

  • @XJWill1
    @XJWill1 7 місяців тому +1

    There is a general method for rationalizing any denominator that involves
    the minimal polynomial of the denominator. If the denominator is D and the
    minimal polynomial of D is m(x) then the rationalizing factor is found from
    f(x) = c/x - m(x) / x
    where c is chosen to eliminate the k / x term from m(x) / x and the desired
    rationalizing factor is f(D)
    The minimal polynomial of a number may be found by equating the number
    to x and then manipulating both sides of the equation to eliminate all
    irrational values.
    I won't list out the math, but for this problem
    x = sqrt(3) + sqrt(7) + 2*sqrt(5)
    and after manipulation the minimal polynomial is
    m(x) = x^8 - 120 * x^6 + 3632 * x^4 - 28800 * x^2 + 256
    then choose c = 256 and
    f(x) = - x^7 + 120 * x^5 - 3632 * x^3 + 28800 * x
    and the desired rationalizing factor is
    f( sqrt(3) + sqrt(7) + 2*sqrt(5) )
    = 64*sqrt(105) - 256*sqrt(7) + 64*sqrt(125) - 128*sqrt(27)
    Of course, the common factor of 64 may be removed without affecting
    the utility: sqrt(105) - 4*sqrt(7) + sqrt(125) - 2*sqrt(27)
    For this problem, the general method results in more arithmetic than other
    methods. But for other denominators, the general method can be helpful.
    For example, how to rationalize the denominator for
    1 / ( 1 + sqrt(2) + cbrt(3) )
    This is left as an exercise for the reader.

    • @SyberMath
      @SyberMath  7 місяців тому

      Wow! Pretty good

  • @yoav613
    @yoav613 7 місяців тому

    Nice problem

  • @giuseppemalaguti435
    @giuseppemalaguti435 7 місяців тому +1

    2/(√7-√3)=2(√7+√3)/4=(√7+√3)/2

  • @barakathaider6333
    @barakathaider6333 7 місяців тому

    👍

  • @preciousmathematicsfun4331
    @preciousmathematicsfun4331 7 місяців тому +1

    You said 4methods

  • @scottleung9587
    @scottleung9587 7 місяців тому

    Cool - although you only showed three methods.

    • @SyberMath
      @SyberMath  7 місяців тому +1

      Uh-oh! Did I forget the fourth one? 🤪

    • @scottleung9587
      @scottleung9587 7 місяців тому

      @@SyberMath yea u did the first, then the third, and the second. Maybe u could post the last one in a separate video?

  • @xwyl
    @xwyl 7 місяців тому

    Your method is too complicated.
    The numerator can be factored to (√3 + √5)(√5 + √7), and the denominator (√3 + √5)+(√5 + √7), then the whole thing becomes [(√3 + √5)^-1+(√5 + √7)^-1]^-1=[(√5-√3+√7-√5)/2]^-1=(√7+√3)/2

    • @SyberMath
      @SyberMath  7 місяців тому +1

      That’s one of the methods 🧐

    • @xwyl
      @xwyl 7 місяців тому

      @@SyberMath um I just skipped most part and didn't see it.