Solving A Nice Diophantine Equation | Integer Solutions

Поділитися
Вставка
  • Опубліковано 1 лют 2025

КОМЕНТАРІ • 17

  • @misterdubity3073
    @misterdubity3073 8 місяців тому +7

    I used Simon to get (3a+2)(3b+1) = 128; first factor is 2 mod 3, 2nd factor is 1 mod 3; When checking negative factors, their mod 3 values flip; eg factors (128*1) makes (a,b)=(42,0) a+b=42; then flip to (-1 * -128) makes (a,b)=(-1,-43) a+b= -44. Solution set {-44, -23, -13, -9, 7, 11, 21, 42}

    • @armacham
      @armacham 8 місяців тому

      43 not 42 . . . that is what I got

  • @mikelucas3072
    @mikelucas3072 8 місяців тому

    To make it simple, I set b=1 and took it from there; thus making a=10, coming up with a final answer of 11 and verifying it.

  • @ianfowler9340
    @ianfowler9340 8 місяців тому +1

    I know everybody has their favourite way of dealing with a rational expression where deg(numerator) = deg(denominator). Like adding 0 to the numerator and splitting. Also used, for example, in integration. Long division is often given a bum rap - claiming longer/more difficult. Not saying that you should change your method, but it is another option that is actually quite easy and short.

  • @shentakuki
    @shentakuki 8 місяців тому

    Patiently waiting for SyberMath to learn about the existance of Nier Automata 😁

    • @SyberMath
      @SyberMath  8 місяців тому

      What’s that? 🧐

    • @shentakuki
      @shentakuki 8 місяців тому

      @@SyberMath Oh, it's a deeply philosophical japanese video game, where the main character's name is 2B for allegorical reasons, cuz it's about the meaning of existance :)

  • @kemalkayraergin5655
    @kemalkayraergin5655 8 місяців тому

    simons favourite method

  • @scottleung9587
    @scottleung9587 8 місяців тому

    I got a+b=2+5=7.

  • @yevgeno
    @yevgeno 8 місяців тому

    Your solution is wrong or at least is incomplete.
    First of all, if you call this equation a Diophantine, then a, b must be > 0. So a = 0 or a = -1 are not solutions.
    Secondly, you missed solution a=10, b=1 -> a+ b = 11.
    Basically, there are 2 solutions: 2, 5 (sum = 7) and 10, 1 (sum = 11), if we're talking about Diophantine equation. If we're talking about an ordinal equation with integer solutions, then 0, 21 (21) and -1, -43 (-44) are solutions too.

    • @FrancisZerbib
      @FrancisZerbib 8 місяців тому

      Diophantine is for Integer solutions. Including zero and negative numbers. Review your basics

    • @yevgeno
      @yevgeno 8 місяців тому

      @@FrancisZerbib Wiki says you're right - it's about integer solutions. Which is a big surprise for me, as I remember from school - Diophantus (like all ancient Greek science) didn't know zero or negative numbers. They only operated natural numbers and fractions.

  • @kentkoh2637
    @kentkoh2637 7 місяців тому

    Feel like a mouse being put into a maze. The question is: how the experience of finding a way out in this maze could help a mouse finding the way out in next one?

  • @rakenzarnsworld2
    @rakenzarnsworld2 8 місяців тому

    a = 10, b = 1
    Answer: 11

  • @UnknownGhost97
    @UnknownGhost97 8 місяців тому

    a = 10, b = 1 is the answer