The Divergence of a Vector Field: Sources and Sinks

Поділитися
Вставка
  • Опубліковано 29 чер 2024
  • This video introduces the divergence operator from vector calculus, which takes a vector field (like the fluid flow of air in a room) and returns a scalar field quantifying how much the vector field is locally expanding or contracting at every point. The divergence is a fundamental building block in vector calculus.
    @eigensteve on Twitter
    eigensteve.com
    databookuw.com
    This video was produced at the University of Washington
    %%% CHAPTERS %%%
    0:00 Introduction & Overview
    3:30 The Divergence is a Linear Operator
    4:41 Example of Positive Divergence
    8:05 Example of Negative Divergence
    10:25 Example of Zero Divergence
    13:58 Vector Field is a Differential Equation
    16:17 Recap
    17:20 Divergence of a Gradient is the Laplacian
  • Наука та технологія

КОМЕНТАРІ • 75

  • @glennr.fisher6435
    @glennr.fisher6435 2 роки тому +40

    Thank you for these videos! This is the best explanation that I’ve ever seen for divergence. I’ve been struggling for years to really understand vector calculus but this finally made it click. Thanks for all of the time and effort that you put into your videos!

  • @pradiptahafid
    @pradiptahafid 2 роки тому +8

    Now I know the secret of Steve being an amazing teacher. He is interested in soooo many things and those things are important to him. Cheers! Love your book and the video companion. you have revolutionized learning.

  • @mastercontrol5000
    @mastercontrol5000 Рік тому +15

    11:58 STEVE, NO!

  • @bharatrawat5909
    @bharatrawat5909 2 роки тому +7

    I am a plasma physics student and we come across equation with divergence curl and sinks in MHD theory.Steve has done a great job in making high quality video explaining the concept methodolgically.

  • @hdheuejhzbsnnaj
    @hdheuejhzbsnnaj 2 роки тому

    These videos are so good, Steve. Thanks so much. Clarity and concision!

  • @pablocb3529
    @pablocb3529 2 роки тому +2

    Really nice lecture. Looking forward to watching the next ones!!

  • @c.l.6456
    @c.l.6456 2 роки тому +2

    hello from Oxford Uni! Professor Brunton, your explaination in my opinion is better than the lecture notes here. I loved seeing the concept in multiple ways instead of staring at definitions.

  • @DerekWoolverton
    @DerekWoolverton 2 роки тому +6

    Besides rotation, constant fields would also have divergence of zero, like f(x,y)= i+j ; Its a constant flow, so there's no expansion or contraction, but its not rotating either.

  • @bodormarcel4373
    @bodormarcel4373 2 роки тому

    Really nice ! One lesson a week is an excellent rhythm, it gives us time to investigate.
    Thank you.

  • @almirbravin1
    @almirbravin1 Рік тому

    Just brilliant . This is pedagogy.
    Transform something complex to something understandable.

  • @fabioantonini5421
    @fabioantonini5421 2 роки тому

    Really nice! Looking forward to the next lesson. Thank you so much for this valuable content.

  • @dineshvagicharla2720
    @dineshvagicharla2720 2 роки тому +1

    Eagerly waiting for your next video on curl and the examples are awesome

  • @leepatrick1756
    @leepatrick1756 2 роки тому +1

    These videos are beautifully clear.

  • @haldersubrata
    @haldersubrata 5 місяців тому

    I am here so I can help my son who is 1st year undergard in NIT. This is undoubtedly the best video on this topics before we start solving PYQ for better CGPA

    • @Eigensteve
      @Eigensteve  5 місяців тому

      Glad it was helpful!

  • @taniadisuria3653
    @taniadisuria3653 2 роки тому

    Nice! Thanks Prof! Looking for next lectures!

  • @firstofallbasics1835
    @firstofallbasics1835 Рік тому +1

    Thanks, sir. I really needed these videos

  • @leepatrick1756
    @leepatrick1756 2 роки тому +28

    Hi. It's a big ask but... Could you explain Maxwell's equations with this clarity? Could you explain the speed of light. I would be so grateful! Lee

    • @letobon100
      @letobon100 2 роки тому

      ua-cam.com/video/gx-OfbNzHK0/v-deo.html it is spanish, but may be can works. Just turn on cc in english

    • @carlasouza5194
      @carlasouza5194 2 роки тому +3

      yeeeeeeeeeeeeeeeeeeeeeees

  • @longyang-funvideo
    @longyang-funvideo Рік тому

    A jewel! Super lecture. Thank you

  • @rajendramisir3530
    @rajendramisir3530 Рік тому

    Interesting and brilliantly explained.

  • @khaledmuhsen2013
    @khaledmuhsen2013 2 роки тому

    Great explanation...thank you so much.

  • @kitzelnsiebert
    @kitzelnsiebert 2 роки тому +1

    Love this, what an awesome video

  • @samirelzein1978
    @samirelzein1978 2 роки тому

    huge service to humanity!

  • @gooblepls3985
    @gooblepls3985 2 роки тому +2

    love this perspective :)

  • @tecnobusiness1201
    @tecnobusiness1201 8 місяців тому

    Parabéns pela Aula !

  • @RahulMadhavan
    @RahulMadhavan 2 роки тому +1

    Laplacian is the divergence of the gradient (of any potential field). Mind = blown. Why was I not taught this before?

  • @wenzhang365
    @wenzhang365 2 роки тому

    Great lecture!

  • @StratosFair
    @StratosFair 2 роки тому +11

    Stellar lecture, looking forward to the following ones. Just wondering how the video is recorded, is Prof. Brunton really writing from right to left ? If so, mad respect

  • @aryanalikhani8777
    @aryanalikhani8777 6 місяців тому

    Thank you Steve

  • @isbestlizard
    @isbestlizard 2 роки тому

    This helps with computer vision! Thanks!

  • @xaviergonzalez5828
    @xaviergonzalez5828 2 роки тому

    Thank you Sir!

  • @Modus_Pwnin
    @Modus_Pwnin 2 роки тому

    Dr Brunton you are a phenomenal teacher. Your videos make me wish that I did graduate school at the University of Washington 😂😭

  • @curtpiazza1688
    @curtpiazza1688 3 місяці тому

    Love it! ❤ Learning a lot! 😂

  • @BangkokBubonaglia
    @BangkokBubonaglia 2 роки тому +1

    It's been 20+ years since I studied this, and this review series is exactly what I've been looking for. My only frustration is that I am too impatient to wait for your next installment. Can you please clone yourself and put these out faster? It is causing me physical pain to know it will be several more weeks to get to the really good stuff.

  • @p0k7lm
    @p0k7lm 2 роки тому

    tnx 4 video 👍☺📚 very useful .

  • @fryingpanm6977
    @fryingpanm6977 Рік тому

    thank so much sir

  • @rocketman99
    @rocketman99 Рік тому

    you are a legend

  • @mathphschjhb7749
    @mathphschjhb7749 2 роки тому

    thank you

  • @TinhTran-tn4mh
    @TinhTran-tn4mh 2 роки тому

    Hope to s33 next one you have a huge fan herr

  • @sk.razibulislam4493
    @sk.razibulislam4493 Рік тому

    Best build up to teach DE

  • @lomotoo88
    @lomotoo88 10 місяців тому

    just one question, nabla squared isn't the Hessian matrix rather than the Laplacian (19:10 in the video) ?

  • @Jacob011
    @Jacob011 Рік тому

    Do div-free fields have to rotate? I could imagine not, they could just be standing still. If they rotate, then in which direction and why?

  • @johnpaulcarter6770
    @johnpaulcarter6770 6 місяців тому

    “I hope you find it interesting” - no more than Feynman’s Lectures on Physics nor less.

  • @garekbushnell3454
    @garekbushnell3454 2 роки тому +1

    So, is there a connection between divergence of a vector field and the determinant of a matrix used to describe that vector field? Both seem to describe how a portion of space grows or shrinks.

    • @arvindp551
      @arvindp551 2 роки тому

      This is just a small attempt to answer the question, it might not be enough. Determinant amplifies the area in one direction and may shrink in the other. Not all the vectors in a matrix are expanded by the factor of determinant of a transition matrix. Some vectors which do not change, are the eigen vectors of that transition matrix. Divergence here is causing expansion/contraction in all directions, the drop of oil will expand in all directions, may not uniformly.

    • @garekbushnell3454
      @garekbushnell3454 2 роки тому +1

      @@arvindp551 hi again! I appreciate your answer; that being said, I am not sure I understand. The way I learned to understand determinants was as a scaling of a unit area, and all unit areas being scaled by the same degree. This is different for vectors, because as you mention, there are eigenvectors.
      I say all this knowing that there are many ways to understand these concepts, and I may simply not be familiar with your framework, or I may just be wrong.

    • @arvindp551
      @arvindp551 2 роки тому

      @@garekbushnell3454 ua-cam.com/video/Ip3X9LOh2dk/v-deo.html

  • @parampatel3198
    @parampatel3198 Місяць тому

    i did not quite get what he said at 14:00. Can someone explain?

  • @Melisaakcm
    @Melisaakcm 11 місяців тому

    Can anyone explain how we get e^t in the matrix? Thanks

  • @tahseensaad7860
    @tahseensaad7860 2 роки тому

    Are we always get scalers from 2 vector products?

    • @PinusTF2Spy
      @PinusTF2Spy 2 роки тому

      In case where both vectors are filled with just numbers and not functions - yes, you're just adding up a bunch of products of numbers and you get a number.
      But in a situation where two vectors are filled with functions you may still get a number (for example if they're orthogonal you're always getting 0), but you may also get a function as a result. Although that function would be a "scalar function", which means that it takes inputs (could be one input, could be multiple) and outputs a single number.
      This also need clarification because it applies to a "dot product" of two vectors, which is different from a "vector product". Vector product takes two vectors and produces a new vector.

  • @rezatalebi2465
    @rezatalebi2465 5 місяців тому +1

    best

  • @diegomendes8804
    @diegomendes8804 6 місяців тому +3

    11:50 what is he drawing?

    • @PingSharp
      @PingSharp 3 місяці тому

      A symbol of good fortune in asian cultures

  • @lioneloddo
    @lioneloddo 2 роки тому

    In Acoustics, there is something that I didn't understand. The acoustics power can be measured on any surface all around a source.
    The sound decreases with distance, but the divergence of the Acoutics pressure is nul. It seems that it is a conservative law (or something like this).
    How is it possible to have a conservative law or divergence = 0, if the sound pressure decreases with the distance ?!
    It's very mysterious...

    • @gooblepls3985
      @gooblepls3985 2 роки тому

      I'm not sure but isn't it just because the energy spreads out over a spherical region around the source, and this region gets larger as the sound travels a longer distance? No sink/source needed for this

    • @lioneloddo
      @lioneloddo 2 роки тому

      @@gooblepls3985 W=I*S. W is the power, I the intensity and S the surface.
      If S is a spherical surface, then S = 4*pi.r**2. But if the divergence of the intensity is equal to zero, why the Intensity decreases with r ?!

  • @wayneosaur
    @wayneosaur 2 роки тому +1

    Is this guy behind glass writing backwards or is there some other devilry going on here?

  • @rat_king-
    @rat_king- Рік тому

    13.30 yes.... for 2D

  • @ToriKo_
    @ToriKo_ Рік тому

    Only 55 comments?!

  • @arvindp551
    @arvindp551 2 роки тому +2

    14:30 I Didn't Understand. Please Somebody Help!

    • @user-yt8gm4xj4g
      @user-yt8gm4xj4g 2 роки тому

      Me too...Why there is a matrix [1 0 0 1] and it becomes e^t?

    • @Mac-jk3gy
      @Mac-jk3gy 2 роки тому

      Me too

    • @garekbushnell3454
      @garekbushnell3454 2 роки тому +9

      No problem! Have you heard of matrix multiplication? If not, its a very useful way to write down a bunch of related equations at once. The way it works for the example he's written down is this: first, he multiplies the [ x ; y ] column with the first row of the matrix, [ 1 0 ]. The x gets multiplied by 1, the y gets multiplied by 0, and then the results get added together. In this case, the result is just x. Then, he multiplies the [ x ; y ] column with the bottom row, [ 0 1]. The x gets multiplied by 0, and the y gets multiplied by 1, and the results get added together, equaling y.
      What's left now is d[ x ; y]/dt = [ x ; y ]. This is just a way of writing the two equations: dx/dt = x, and dy/dt = y. If you've ever seen a differential equation, you may recognize these. You can solve them by separating variables: dx/x = dt and dy/y = dt. When these equations are solved, they become ln(x) = t and ln(y) = t. Raising e to both sides, and you get x = e^t and y = e^t .

    • @arvindp551
      @arvindp551 2 роки тому +1

      @@garekbushnell3454 Thank You So So Much! Really appreciate the way you have explained every piece of it.

    • @garekbushnell3454
      @garekbushnell3454 2 роки тому +1

      @@arvindp551 happy to help! Good luck in your math studies!

  • @mrk9713
    @mrk9713 2 роки тому

    Why you guys just don't flip horizontally the video while editing?

  • @jontedeakin1986
    @jontedeakin1986 Місяць тому

    you drew a swastika lol