Quintic Equation From Chebyshev Polynomial

Поділитися
Вставка
  • Опубліковано 10 лис 2024

КОМЕНТАРІ • 203

  • @lesnyk255
    @lesnyk255 3 роки тому +116

    Chebyshev polynomials are designated as T because early transliterations from the Cyrillic rendered "Chebyshev" as "Tchebicheff" - similar to how "czar" was once (and sometimes still is) spelled "tsar".

    • @blackpenredpen
      @blackpenredpen  3 роки тому +18

      Oooh I see. Thanks.

    • @pierreabbat6157
      @pierreabbat6157 3 роки тому +8

      It should actually be "Chebyshóv" (Чебышёв) but, for some reason, people forget to yoficate it.

    • @legoushque5927
      @legoushque5927 3 роки тому +5

      @@pierreabbat6157 the reason is that russians often write the letter е instead of ё. This letters are pronounced differently

    • @carultch
      @carultch 2 роки тому +2

      @@pierreabbat6157 So maybe we should designate them as Ч(x). Cyrillic needs more representation in the symbols used in mathematics. I've heard that sha is used as a variable name, but that's the only one I know about so far.

    • @carultch
      @carultch 2 роки тому

      @@pierreabbat6157 Interesting how there is no sounded letter in the original spelling where the y is in the transliterated spelling. Just the soft sign. I never expected that. I would've expected Чебйшёв.

  • @michaelroberts1120
    @michaelroberts1120 3 роки тому +145

    If you read the subtitles, these are actually "chubby chef" polynomials.

  • @NihilistEmier
    @NihilistEmier 3 роки тому +162

    I failed my calc exam because I was sitting between two identical twins ,so it was hard to differentiate

    • @johnnath4137
      @johnnath4137 3 роки тому +35

      I didn’t fit in well at school, so I couldn’t integrate. But I was able to differentiate though.

    • @HeyKevinYT
      @HeyKevinYT 3 роки тому +34

      I also experience an infinite series of similar pain. It makes me want to go to the L’Hôpital.

    • @mgancarzjr
      @mgancarzjr 3 роки тому +13

      I didn't like my school, so I did the ole' la place transformation.

    • @tomatrix7525
      @tomatrix7525 3 роки тому +11

      @@mgancarzjr Moving to a new country was tough for me. I decided to integrate by parts to slowly ease myself in

    • @karangupta4978
      @karangupta4978 3 роки тому +9

      @@HeyKevinYT don't worry every pain has a limit... It's good that you went to L' Hopital.

  • @yatharthsingh5349
    @yatharthsingh5349 3 роки тому +19

    Sheer excellence!

  • @dirt3554
    @dirt3554 3 роки тому +9

    I would love to see you do more STEP questions!

  • @TheFlax33
    @TheFlax33 3 роки тому +2

    Fun vid. Interesting .... Solving is satisfying. Great vid. ...Gotta get my trig book off the shelf.

  • @ashwinraj2033
    @ashwinraj2033 3 роки тому

    This Is The Best Quintic Equation Ever!

  • @douro20
    @douro20 2 роки тому +3

    There is a type of microstrip filter used in RF known as a Chebyshev filter as its topology is derived from Chebyshev polynomials.

  • @Kallum
    @Kallum 3 роки тому

    I love the mic just as much as the math

  • @ЕгорИгнатьев-у9г
    @ЕгорИгнатьев-у9г 3 роки тому +3

    This is probably a big coincidence, but you released a video on this topic EXACTLY after the end of one of the Russian Olympiads held by the KGB for schoolchildren, where there was a problem on EXACTLY THIS topic. I just wrote this Olympiad and remember this problem. We uncovered you, you are an overseas KGB agent...

    • @carultch
      @carultch 2 роки тому

      I think he's might be a K Gamma 6 agent.

  • @holyshit922
    @holyshit922 2 роки тому

    Ordinary generating function for Chebyshov polynomial is
    G(x,t)=(1-xt)/(1-2xt+t^2)
    Exponential generating function for Chebyshov polynomial is
    e^{xt}cos(sqrt(1-x^2)t)
    Exponential generating function gives us formula with derivatives
    T_{n}(x) = limit (d^n/dt^n e^{xt}cos(sqrt(1-x^2)t), t = 0)

  • @Ninja20704
    @Ninja20704 3 роки тому +4

    I’m not sure if it’s always true, but I noticed in the examples that you did, that when n is odd, we only see odd powers of cosine, and when n is even, we only see even powers. Its not much, but just anothher interesting fact I saw.

    • @blackpenredpen
      @blackpenredpen  3 роки тому +1

      You are right and we can use the recursive formula to prove it.

  • @NishanthVikraman
    @NishanthVikraman 3 роки тому +6

    Interesting to note the Chebyshev looks similar to the Fourier series!

  • @quentinsidle4550
    @quentinsidle4550 3 роки тому

    Best videos ever

  • @holyshit922
    @holyshit922 11 місяців тому

    Maybe you can record video about Chebyshev polynomials
    Michael Penn derived formula with complex numbers but he stopped too early
    Formula for Chebyshev polynomials as a sum of monomials can be found at least three ways
    1. By orthogonalisation with Inner product = Int(p(x)q(x)*1/sqrt(1-x^2),x=-1..1)
    2. By solving recurrence relation
    a) define exponential generating function
    b) solve ordinary differential equation
    E''(t)-2xE'(t)+E(t) = 0
    E(0) = 1
    E'(0) = x
    Suggested method is Laplace transform
    c) expand E(x,t) = exp(xt)cos(sqrt(1-x^2)t) with Leibniz product rule
    (It looks like binomial expansion but instead of powers we have derivatives)
    d) we can go further and expand (x^2-1)^k with binomial expansion
    e) use fact that binomial(n,k) = binomial(n,n-k) and reindex the inner sum
    f) change order of summation
    g) calculate the sum
    sum(binomial(n,2*k)*binomial(k,m),k=m..floor(n/2))
    I have problems with 2 g)
    3. By solving ordinary differential equation (linear , homogeneous second order but not with constant coefficients)
    a) Let y(t) = cos(nt)
    b) differentiate y(t) twice to get
    y''(t) = -n^2cos(nt)
    y''(t) = -n^2y(t)
    y''(t) + n^2y(t) = 0
    c) lets change of independent variable t = arccos(x) to get
    (1-x^2)y''(x) - xy'(x) + n^2y(x) = 0
    d) lets solve this equation with power series
    y(x) = sum(a_{k}x^{k},k=0..infinity)
    e) we get two step recursion which can be easily expressed as a product
    but warning if we want to expand this product to factorial and later to binomial coefficient
    we may get factorial of negative number or division by zero
    Once we have Chebyshev T polynomials we can easily get Chebyshev U polynomials because
    U_{n}(x) = 1/(n+1) d/dx T_{n+1}(x)
    These three approaches works for all orthogonal polynomials

  • @kshitijsharma640
    @kshitijsharma640 2 роки тому +1

    I think one small test we can do is to try to divide the equation so constant term is between -1 and 1 and check to see if sum of rest of the coeffecients is one or not by the fact which can be proved just by putting theta =0

  • @m_th_m_t_cs
    @m_th_m_t_cs 3 роки тому +4

    The value between x and cos12° in the beginning was so complex that i thought how approch the value😂😂 but this problem solving was so great

  • @AJ-et3vf
    @AJ-et3vf Рік тому

    Great video. Thank you

  • @elliothwang8066
    @elliothwang8066 3 роки тому

    You teach math better than my teacher

  • @thomasolson7447
    @thomasolson7447 2 роки тому

    T_n/2=(cos(θ)+i*sin(θ))^n+(cos(θ)-i*sin(θ))^n
    The first part is a circle function, the second part removes the sin part of that circle function, making it a real number because it's a conjugate. This is a Lucas Number thing. All properties Lucas Number have, this will also have. I'm sure the sum is easy to calculate.

  • @coc235
    @coc235 3 роки тому +3

    You can prove the sum of coefficients just by induction
    Let S(n) be the sum of coefficients of T(n). We know S(0)=1 and S(1)=1. Then we can say S(n) = 2*S(n-1)-S(n-2) = 2*1-1 = 1

  • @eckhardtdom
    @eckhardtdom Рік тому +1

    I really like his explaination. "How could we continue this video." A valid math proof 😂

  • @UttamKumar-kt4jp
    @UttamKumar-kt4jp 3 роки тому +1

    Really like this🔥🔥

  • @annonyme8529
    @annonyme8529 3 роки тому +6

    After finding that 1/2 is a solution of the equation, we have a biquadratic equation easily solvable with X=x^2

    • @shreyan1362
      @shreyan1362 3 роки тому +2

      Can you explain?

    • @shreyan1362
      @shreyan1362 3 роки тому +1

      16 x^4 + 8 x^3 - 16 x^2 - 8 x + 1

    • @landsgevaer
      @landsgevaer 3 роки тому +3

      @@shreyan1362 Yes, that is the result.
      16x^4+8x^3-16x^2-8x+1=0
      can be solved using quartic methods, but I don't think there is a particularly simple substitution (certainly not simply in terms of x^2, as suggested).
      en.m.wikipedia.org/wiki/Quartic_function
      www.wolframalpha.com/input/?i=solve+16x%5E4%2B8x%5E3-16x%5E2-8x%2B1%3D0

  • @bensonprice4027
    @bensonprice4027 3 роки тому

    After making your substitution x = cos(theta) and getting your polynomial in a nice form, your coefficients still sum up to 1. Kinda cool.

  • @vibhupandya6103
    @vibhupandya6103 3 роки тому +7

    I want the whole world to see this video at 0:44 because here i have to memorise 200 TRIG FORMULAS ICHDJFJSNFJSBCNJD

  • @elkincampos3804
    @elkincampos3804 3 роки тому

    We can use the effective Piezas methods for resolving quintic that are solvable by radicals. Then the solutions are the form a+(z_1)^(1/5)+(z_2)^(1/5)+(z_3)^(1/5)+(z_4)^(1/5). Where z_1,z_2,z_3,z_4 are roots of quartic polynomial. This quartic polynomial is solvable only using square root. And (z_i)^(1/5) is one root of unity. We can a few complicated ordering thats roots. (If the polynomial has one real solutions, then z_1,z_2,z_3,z_4 are real,the a+(z_1)^(1/5)+...+(z_5)^(1/5)). (If the polynomial has 5 real solutions is imposible express the roots in terms of real radicals (standard)).

    • @jorgegarcia_dragon
      @jorgegarcia_dragon 4 місяці тому

      The method of Piezas is a copy of the method of Watson and Young. A better aproach is the method of Malfatti or McClintock

  • @BenfanichAbderrahmane
    @BenfanichAbderrahmane 3 роки тому

    The sum off all the coefficients is 1 because if you give to tita the value of 0 , you get a1+a2....+an = cos(n0)=1

  • @jacobolus
    @jacobolus 3 роки тому

    One perhaps clearer way of writing the proof of this recurrence is
    exp(i(n+1)x)
    = exp(inx)exp(ix) + exp(inx)exp(−ix) − exp(inx)exp(−ix)
    = exp(inx)(2 cos x) − exp(i(n−1)x),
    from which the cosine ("real") and sine ("imaginary") parts can be separated.

  • @knivesoutcatchdamouse2137
    @knivesoutcatchdamouse2137 Рік тому

    I also noticed that the sum of the absolute values of the coefficients of T_(n+2) equals 2 times the sum of the abs values of the coefficients of T_(n+1) plus the sum of the abs values of the coefficients of T_n.
    I'm working on trying to prove it but I think you have to use a power of i times T_n(i) for the general term to get a positive integer. In terms of T_n(x), you are taking x=arccos(i), which is a multivalued function, but its principal value is π/2 - i ln(1+√2) ! 😅

  • @maxmartin9735
    @maxmartin9735 3 роки тому +1

    Video request: Find the maclaurin series of f(x)=(2-x^2)^1/3

  • @kobethebeefinmathworld953
    @kobethebeefinmathworld953 3 роки тому

    Just a fun fact: 12 = 36/3 and cos 36 degrees (pi/5) is algebraic (either sin 18 or cos 18 has a nice form)

  • @harshsuthar9341
    @harshsuthar9341 3 роки тому

    we can prove that sum of coefficient will be 1 like below:
    cos(ntheta)=costheta {f(costheta)} if we check limit theta tends to zero both side ...

  • @sashimanu
    @sashimanu 3 роки тому +1

    Chebyshev polynomialls are called Tn, Un, Vn, Wn, that's why not just Cn.

  • @Lokalgott
    @Lokalgott 3 роки тому

    I am thinking if you could transfer the knowledge of the C-P onto the harmonic series because it looks Like cos(x)=×, cos(2x)= x^2
    So that cos(2a)+cos(2b)+cos(2c)+...cos(2z) = a^2+b^2+c^2..+z^2
    Or:
    cos(a) + cos(2a)+cos(3a)...+cos(inf×a)
    = a+a^2+a^3...+a^inf
    And maybe isn't that similar to the way Euler solved the "Basel Problem"?

  • @RamanKumar-is7xb
    @RamanKumar-is7xb 3 роки тому +3

    0:47 we all need that shirt !!

  • @JSSTyger
    @JSSTyger 3 роки тому +1

    BPRP is the Quinticsential math professor.

  • @aliasgharheidaritabar9128
    @aliasgharheidaritabar9128 3 роки тому

    It was so neat .tx

  • @holyshit922
    @holyshit922 3 роки тому

    GF for cos(na) is
    G(x)=(1 - cos(a)*x)/(x^2 - 2cos(a)*x+1)

  • @Manluigi
    @Manluigi 3 роки тому

    with your idea x^5-20x^3+80x-32=0 → x=1/2 √3 √(10+2√5) +1/2 (√5-1)

  • @jackkalver4644
    @jackkalver4644 5 місяців тому

    tanh(3arctanh x) may look pointy, but it’s smooth on its entire domain.

  • @MikeStallings2023
    @MikeStallings2023 4 місяці тому

    Where can I get that trig shirt? Did not see it in the store. And it's upside down, nice!

  • @juauke
    @juauke 3 роки тому +10

    In France, we write it as Tchebychev so I guess it kinda depends on where you're from (maybe in Russian, it does start with the equivalent to the t of the Latin Alphabet)

    • @meta04
      @meta04 3 роки тому +3

      kind of! the first letter in the Russian name (Чебышёв) is the closest thing you can get to a French t+ch consonant cluster, and the difference in orthography is just ... because of the difference in how ch is used.

    • @blackpenredpen
      @blackpenredpen  3 роки тому

      Ah I see!

    • @carultch
      @carultch 2 роки тому

      @@blackpenredpen In French, CH sounds like an English SH, like you see in Michigan or Chevrolet. They use the T in front of ch, to make it sound like the CH in Charles. An example is the country of Tchad, that we call Chad in English.

  • @theproofessayist8441
    @theproofessayist8441 3 роки тому +1

    Chebyshev Polynomial makes TRIG fun imo.

  • @cameronspalding9792
    @cameronspalding9792 3 роки тому +6

    I would have derived it using powers of cos + i sin

  • @AhmedHan
    @AhmedHan 3 роки тому +8

    Can you find a similar formula for sin(n * teta)?

    • @tomkerruish2982
      @tomkerruish2982 3 роки тому +2

      Yes; there are two families of Chebyshev polynomials. Incidentally, there are numerous ways to write his name in the Latin alphabet, so be aware when you go looking. I think my favorite is Čebyšev.

    • @guitar_jero
      @guitar_jero 3 роки тому

      @@tomkerruish2982 West of Russia

    • @landsgevaer
      @landsgevaer 3 роки тому +2

      If you have the cos(nx) formula, then
      sin(nx) = d/dx -cos(nx)/n
      works for all n except 0.
      Interestingly, the recursion remains the same
      sin((n+1)x) = 2cos(x)sin(nx) - sin((n-1)x)
      except starting values are different
      sin(0x) = 0
      sin(1x) = sin(x)
      sin(2x) = 2cos(x)sin(x) - 0
      sin(3x) = 2cos(x)(2cos(x)sin(x)) - sin(x) = -4sin^3(x) + 3sin(x)
      etc.
      See e.g. trans4mind.com/personal_development/mathematics/trigonometry/multipleAnglesRecursiveFormula.htm and related pages on that site.

  • @matthewzerkel7822
    @matthewzerkel7822 3 роки тому +2

    1:57 blackpenredpen...bluepen?

  • @cosmicvoidtree
    @cosmicvoidtree 2 роки тому

    Huh, I was looking into these on my own (without knowing the name) and was analyzing the coefficients to see what patterns I could find to create a general formula. Didn’t come up with anything. May go back and compute a few more terms.

  • @divysaraswat2084
    @divysaraswat2084 3 роки тому

    The name of the polynomial refer to my professor : chubby chef. Lol
    BTW great one as always❤️

  • @uhSighLimb
    @uhSighLimb 3 роки тому

    Absolutely beautiful

  • @ejuanito
    @ejuanito 3 роки тому

    Can you see the phi number into some solutions?
    In fact you may verify in Wolfram Alpha (for example) and you will find that local maxima of the function represented by polynomial function not equalled to zero are (1/(2 phi)) and (- phi/2), and the local minima (- (1/(2 phi))) and (phi/2).

    • @carultch
      @carultch 2 роки тому

      Yes. This is what Grant of 3Blue1Brown calls "phi's little brother".

  • @ahanamishrastad1726
    @ahanamishrastad1726 3 роки тому

    Yay!!

  • @ilickcatnip
    @ilickcatnip 3 роки тому +4

    0:46 wait that's illegal!😂

  • @vibhupandya6103
    @vibhupandya6103 3 роки тому +2

    Dear @blackpenredpen
    Can you suggest some nice way to memorise trig identities? I have soooo many of them!! At least like 50

  • @anlei9882
    @anlei9882 3 роки тому +1

    How about sin(nθ)?

  • @sapy4124
    @sapy4124 3 роки тому +3

    It is (1/COS C) [ Only legends can understand 😉 ]

    • @jagula
      @jagula 3 роки тому +1

      Sec see

    • @sapy4124
      @sapy4124 3 роки тому

      @@jagula no man...... Some thing BOLD

    • @jagula
      @jagula 3 роки тому

      @@sapy4124 i got it but i dont want to write it here xD

    • @sapy4124
      @sapy4124 3 роки тому

      @@jagula modulus 0 :- l0l

  • @AndDiracisHisProphet
    @AndDiracisHisProphet 3 роки тому +1

    I thinkt it is called T_n because Chebyshev was a russian, so you need a transliteration vom cyrillic to the latin alphabet. And a different common transliteration is Tschebyschow. But that is just a guess.
    Edit: should have looked into the comments.

    • @holyshit922
      @holyshit922 3 роки тому +1

      This transliteration looks like german

    • @AndDiracisHisProphet
      @AndDiracisHisProphet 3 роки тому +1

      @@holyshit922 There are different transliterations. I'm not an exoert, but I assume the german transliteraion is Tschebyscheff

    • @holyshit922
      @holyshit922 3 роки тому +1

      ​@@AndDiracisHisProphet Maybe, but why in most transliterations there is e when in Cyrillic there is e with diaeresis Чебышёв

    • @AndDiracisHisProphet
      @AndDiracisHisProphet 3 роки тому +1

      @@holyshit922 I dunno. I asked Wikipedia

  • @dr.rahulgupta7573
    @dr.rahulgupta7573 3 роки тому +10

    Excellent presentation. Wow !! DrRahul Rohtak India

  • @alwysrite
    @alwysrite 3 роки тому +1

    Chevy Chase polynomials? : )

  • @noobtommy4739
    @noobtommy4739 5 місяців тому

    Is there a general formular for the nth term of T? I mean can find the nth term without knowing the (n-1) and (n-2) th terms?(ex: cos 10x without knowing cos 9x and cos 8x)

  • @thepeelshorti2881
    @thepeelshorti2881 Рік тому

    "Champion-Polynomial"

  • @holyshit922
    @holyshit922 Рік тому

    First of all here we have yo (e with diaeresis, although diaeresis is usually omitted it is still there) and sh is hard so we say this name Chebyshov (more precisely Chiebyshov)
    Moreover accent is on yo (Accent is flowing and knowing where is accent is important for correct reading)
    You read it wrong and other take example from you and also read it wrong even if they where taught this language
    How I get formula for Chebyshov polynomials
    I started with cosine of sum then i wrote recursive relation for it
    cos((n+1)t)=cos(nx)cos(t) - sin(nt)sin(t)
    cos((n-1)t)=cos(nx)cos(t) + sin(nt)sin(t)
    cos((n+1)t)+cos((n-1)t) = 2cos(t)cos(nt)
    Let cos(t) = x and cos(nt)=T_{n}(x)
    T_{n+1}(x)+T_{n-1}(x)=2xT_{n}(x)
    T_{n+1}(x) = 2xT_{n}(x) - T_{n-1}(x)
    T_{n}(x) = 2xT_{n-1}(x) - T_{n-2}(x)
    so we have recursion
    T_{n}(x) = 2xT_{n-1}(x) - T_{n-2}(x)
    T_{0}(x) = 1
    T_{1}(x) = x
    Here I used exponential generating function
    E(x,t) = sum(T_{n}(x)t^n,n=0..infinity)
    After plugging it into the recursive relation i have got second order linear ODE with constant coefficients
    (in fact initial value problem)
    This differential equation was easy to solve with Laplace transform
    Once i have got exponential generating function it appeared that it is easy to calculate nth derivative using Leibniz's product rule

  • @holyshit922
    @holyshit922 Рік тому

    0:54 and what is formula for kth coefficient of Chebyshov polynomial nth degree ?

  • @Setiny
    @Setiny 3 роки тому +2

    Apparently the intuition of T_n is that you add cos (n+1)t and cos (n-1)t to get 2 cos nt cos t

  • @CarlOfDuty98
    @CarlOfDuty98 3 роки тому +1

    That moment at 20:10 remembers me of CrazyRussianHacker when he forgots tp cut theese parts 😂

  • @rikhalder5708
    @rikhalder5708 3 роки тому +1

    Great job

  • @joaquingutierrez3072
    @joaquingutierrez3072 3 роки тому +1

    Cool video ! Thank you

  • @蛰扉
    @蛰扉 3 роки тому +3

    sum must be 1. suppose theta = 0, cos theta = 1, which forces the other side to have coef summed to 1

  • @pierreabbat6157
    @pierreabbat6157 3 роки тому +1

    I was wondering where the coefficient 4 in 4cos³θ came from, so I figured:
    cis(3θ)=cos³θ+3icos²θsinθ-3cosθsin²θ-isin³θ
    =cos³θ+3i(1-sin²θ)sinθ-3cosθ(1-cos²θ)-isin³θ.

  • @quirtt
    @quirtt 3 роки тому

    WE WANT A PART2 OF THIS!!!!

  • @OleJoe
    @OleJoe Рік тому

    The reason they use T for Chebyshev polynomials is because of the French Tchebychev.

  • @amitayushxyz8591
    @amitayushxyz8591 3 роки тому

    In 5:00 you added cosnthetacos theta twice then you sdould have substracted it twice so that original value don't change but you added sinnthetasintheta which is wrong

  • @Siova28
    @Siova28 3 роки тому +1

    I catch the part in which 1 is 1

  • @soulsilencer1864
    @soulsilencer1864 3 роки тому

    Hi, you made a video about arc lenght= area can you do it on a 3d shape where surface area = volume

  • @YBwaibeeYB
    @YBwaibeeYB 3 роки тому

    Just finished the the 100 integrals video....why did you change your look.?

    • @mattpearce4313
      @mattpearce4313 3 роки тому +1

      To look like an ancient philosopher mathematician of course ;)

  • @jesselapides4390
    @jesselapides4390 3 роки тому

    Not entirely related, but I haven't been able to find anything online that shows me how to obtain the principal quintic form in terms of the general quintic equation's coefficients. Is it possible to even do this?

    • @jorgegarcia_dragon
      @jorgegarcia_dragon 4 місяці тому

      Yeah, it is possible to do it, using a Tschirnhaus transformation of second order and apply the resultant.

  • @abdomohamed4962
    @abdomohamed4962 3 роки тому +1

    Don't have time ... I have an Algebra & Calculus Exam tomorrow , But I'll make sure I watch this vid sometime ..

  • @muktikpatel733
    @muktikpatel733 5 місяців тому

    1:17 plot armor!😂

  • @prithujsarkar2010
    @prithujsarkar2010 3 роки тому

    part 2 plsssssssssssssssssssssssssssssssssssssssss :)

  • @shashankashekharsahu9852
    @shashankashekharsahu9852 3 роки тому +2

    Sir plz next video how to find 6th derivative of X.e^X by using leibnitz rule.

  • @mohsenjalily2181
    @mohsenjalily2181 3 роки тому

    What is that object, That always you hold it in your right hand?????

    • @andreffrosa
      @andreffrosa 3 роки тому +1

      *left. It is a mic.

    • @ilickcatnip
      @ilickcatnip 3 роки тому

      @@andreffrosa yes, but more importantly, it's a pokeball!

  • @loneranger4282
    @loneranger4282 3 роки тому

    Please change your pfp back to normal, not that the new one is bad, it is just that the old one is so iconic

  • @AKABILASETOFICIAL
    @AKABILASETOFICIAL 3 роки тому

    Toppppppppp

  • @theophonchana5025
    @theophonchana5025 3 роки тому

    #polynomial

  • @OriginalSuschi
    @OriginalSuschi 3 роки тому +1

    Just use the quintic formula that 100%-ly exists .... 🌚

    • @nandeesh2ninad
      @nandeesh2ninad 3 роки тому +1

      No moon day in the last?.... I guess?

  • @ilickcatnip
    @ilickcatnip 3 роки тому +4

    20:03 The original "to the" : Am I a joke to you?

    • @carultch
      @carultch 2 роки тому

      That's what I thought exponents were called, before I knew the term. I called them "ta-the's", because it is read aloud as "2 to the 4th".

  • @stigastondogg730
    @stigastondogg730 3 роки тому +2

    My favourite comment: “One is one” 😁😁😁

  • @jarikosonen4079
    @jarikosonen4079 3 роки тому

    That could be hard to be found being Chebyshev...

  • @theophonchana5025
    @theophonchana5025 3 роки тому

    #QuinticEquation

  • @VijaySingh-ti5yk
    @VijaySingh-ti5yk 3 роки тому +2

    Or da sab badiya😂😂

  • @magribi
    @magribi 3 роки тому +1

    Super

    • @nandeesh2ninad
      @nandeesh2ninad 3 роки тому +1

      @Cookie Monster good one🤣🤣

    • @carultch
      @carultch 2 роки тому

      @@nandeesh2ninad Good e^(2*pi*i)!

    • @carultch
      @carultch 2 роки тому

      @@nandeesh2ninad Or should I say?
      गूड ए^(२*पी*ई)

  • @loneranger4282
    @loneranger4282 3 роки тому +1

    BlackPenRedPen: **Makes a new video**
    Me: #Yay

  • @rahuketu2801
    @rahuketu2801 3 роки тому +12

    Pls help me integrate x^2 /{ (1-x^4) * sqrt ( 1+x^4) }
    This is my iit jee integral
    Even wolfram alpha failed lol
    Pls help

    • @rahuketu2801
      @rahuketu2801 3 роки тому

      Pls

    • @jocabulous
      @jocabulous 3 роки тому +4

      No

    • @manassharma276
      @manassharma276 3 роки тому

      Don't think there's an elementary function to the integral

    • @aravinds3846
      @aravinds3846 3 роки тому +2

      Use integral calculator. Fellow jee aspirant here

    • @tatshatsarangi3894
      @tatshatsarangi3894 3 роки тому

      Oh wow great question man
      I seems like i have seen this integral somewhere🤔

  • @number_8903
    @number_8903 3 роки тому +1

    Nice beard though

  • @ultrio325
    @ultrio325 3 роки тому +1

    bro please

  • @valemontgomery9401
    @valemontgomery9401 3 роки тому

    I also noticed the first coefficient of each identity is always equal to 2^(n-1)

  • @saharhaimyaccov4977
    @saharhaimyaccov4977 3 роки тому

    @bprp @13:11 can u prove that 1 is 1 🤪

  • @mayankpatel2288-l5i
    @mayankpatel2288-l5i 3 роки тому +2

    I want that t shirt 😂

  • @Ben-wv7ht
    @Ben-wv7ht 3 роки тому

    Juste use the formulas when you have a 4th degree equation 🤪

  • @bemusedindian8571
    @bemusedindian8571 3 роки тому

    The beard, oh dear.