Cauchy Schwarz Proof

Поділитися
Вставка
  • Опубліковано 9 січ 2025

КОМЕНТАРІ • 180

  • @cipicm
    @cipicm 2 роки тому +3

    even after 5 years this video is a masterpiece regarding the clearness of this proof. with no english background in mathematics it was still so easy to understand. thank you a lot.

  • @duckymomo7935
    @duckymomo7935 6 років тому +141

    In France, it’s called Cauchy inequality
    In Germany, it’s Schwarz inequality
    In Russia, it’s just inequality
    😂 LOL

    • @drpeyam
      @drpeyam  6 років тому +8

      😂😂😂

    • @syahimiafiq5914
      @syahimiafiq5914 5 років тому +9

      Well Russian called it Bunyakovsky inequality

    • @jamesclerkmaxwell676
      @jamesclerkmaxwell676 5 років тому +1

      Syahimi Afiq cauchy was his doctoral advisor. My two cents

    • @alexeybekasov4298
      @alexeybekasov4298 5 років тому +1

      Actually, Bunyakovsky published it 25 years earlier than Schwarz.. ;)

    • @joshuafreeman9532
      @joshuafreeman9532 4 роки тому +3

      Nope in France its Cauchy-Schwarz

  • @MarkJay
    @MarkJay 7 років тому +52

    "What is love?"
    -Dr. Peyam

  • @letladisebesho4503
    @letladisebesho4503 5 років тому +35

    This is an excellent, clear proof. Now I finally get it. Thank you 🙏🏽

  • @shaunderoza2321
    @shaunderoza2321 7 років тому +175

    The one dislike must from someone who saw the words "discriminant" and "inequality" and got offended.

    • @StreuB1
      @StreuB1 6 років тому +5

      BEST COMMENT EVER!! LOL No time for snowflakes in mathematics. We've all business here.

    • @forklift1712
      @forklift1712 5 років тому +5

      probably from people who can't appreciate Dr. Peyam's enthusiasm

  • @jamesclerkmaxwell676
    @jamesclerkmaxwell676 5 років тому +18

    "it's better than watching TV " 😂 I love you Prof. Tough crowd

  • @rubentuquerrez
    @rubentuquerrez 7 років тому +8

    I'v neve liked the proyections proof, but I love this one. I discover this by myself while I was studying for an exam. This was awesome. Thanks for the video Dr Peyam!

    • @datboi_wild1222
      @datboi_wild1222 6 років тому

      Still dont get it. Im teaching myself quantum physics and im learning linear algebra in order to do that but i cant seem to understand this. Im in 8th grade btw. Dumb it down.

    • @nilsdula7693
      @nilsdula7693 5 років тому +2

      You need to let your brain time to develop.

    • @thedoublehelix5661
      @thedoublehelix5661 3 роки тому

      @@datboi_wild1222 did you figure it out now?

    • @datboi_wild1222
      @datboi_wild1222 3 роки тому

      @@thedoublehelix5661 lol, ya

  • @vukstojiljkovic7181
    @vukstojiljkovic7181 6 років тому +8

    I love this proof dude! I was confused with the proof that they presented to me on the university, but this one, i love it. Keep making math videos, maybe i will join you in the near future!

  • @tlhomotsemoteme2423
    @tlhomotsemoteme2423 5 років тому +5

    I am writing in 5 hrs and I needed you to boost my confidence. Thank you.

    • @drpeyam
      @drpeyam  5 років тому +1

      Good luck!!!

  • @afifakimih8823
    @afifakimih8823 5 років тому +1

    I'm a regular viewer of Dr. Peyam...his derivation methods are always unique.!!

  • @mokouf3
    @mokouf3 4 роки тому +34

    The camera man is actually blackpenredpen!

  • @randywilton3466
    @randywilton3466 3 роки тому +3

    This is an amazing proof! Way easier to understand than the one my real analysis prof gave us. Thank you

  • @chessislife3429
    @chessislife3429 6 років тому +1

    Wow!! You get so many people that have same interest and passion as you, so fortunate

  • @RealEverythingComputers
    @RealEverythingComputers 3 місяці тому

    At 1:40 when you show the summation of the dot product, do you mean i in superscript or subscript because its done in superscript in the video which confuses me with an exponent. Your clarification will be much appreciated. thx

  • @drandrewsanchez
    @drandrewsanchez 7 років тому +8

    Great work! I love the way you speak!

  • @lamequemaciel6412
    @lamequemaciel6412 3 роки тому

    Hey, professor! I was search the proof of Schwarz inequality for the context of Quantum Mechanics, mean that we can to use the complex space. But, I appreciate your proof.

  • @emanuellandeholm5657
    @emanuellandeholm5657 2 роки тому

    As far as I can find out, Cauchy-Schwarz seems to hold for, not just real inner product spaces, and not just complex inner product spaces, but for all vector spaces! Please correct me if I'm uneducated! :)

  • @pheasant139
    @pheasant139 Рік тому

    Very elegant proof. Easy to understand. Thank you!

  • @stevenbi7495
    @stevenbi7495 3 роки тому

    Watching this before Linear Algebra Final!!! Absolutely love this proof!!

  • @josephinell314
    @josephinell314 3 місяці тому

    Such an elegant proof! Thank you for sharing.

  • @abratumwe
    @abratumwe 3 роки тому

    07:08 I didn't understand that part, we also have quadratic curves with positive answers only 🤔😕
    What if the polynomial of t is only positive?

    • @abratumwe
      @abratumwe 3 роки тому

      You meant negative in y?

  • @richardjamieson7548
    @richardjamieson7548 4 роки тому +1

    In step i of the proof t is defined to be an element of the
    Real Numbers. In the final step of the proof the the discriminant
    is said to be negative. That implies t is a complex number. Contradiction?
    Rik

  • @sdmartens22
    @sdmartens22 7 років тому +2

    Very impressive video as always, i wish you would do some damage on more advanced topics; the world needs you there.

  • @loganreina2290
    @loganreina2290 7 років тому +1

    We were JUST proving this for homework in my honors calc class for our homework! Neat!

  • @RealEverythingComputers
    @RealEverythingComputers 3 місяці тому

    Great video! That was a really darn good proof!

  • @starfire8679
    @starfire8679 3 роки тому

    Really great video!! ❤And your great personality makes everything so interesting and fun 👌

  • @sandnstars8
    @sandnstars8 6 років тому +1

    Thanks for explaining the notation! It helped a lot!

  • @bluemonk9480
    @bluemonk9480 Рік тому

    I don't understand why the proof suddenly decides to look towards the discriminant. It makes sense to use it since it guarantees that b^2 - 4ac

  • @lLl-fl7rv
    @lLl-fl7rv 6 років тому

    Thanks a lot man!! You saved my life one day before my final exam xD

  • @minyhailabera3616
    @minyhailabera3616 4 роки тому +1

    the proof was short and understandable way.Thanks a lot.

  • @joudy5767
    @joudy5767 4 роки тому

    Can’t thank you enough!! Excellent proof :)

  • @avdrago7170
    @avdrago7170 6 років тому

    A way that I thought to prove this inequality when looking at the thumbnail is that with the the angle between two vectors x, cos(x)=|u * v|/(||u||||v||). So, |u*v|= cos(x)||u|| ||v||. Now, |cos(x)| is always less than or equal to 1, so when you multiply it to a separate quantity, you are scaling that quantity such that it is less than or equal to its original value. So, in the end, |u*v| is less than or equal to ||u|| ||v||

    • @drpeyam
      @drpeyam  6 років тому

      Your method only works in R^n, unfortunately

    • @avdrago7170
      @avdrago7170 6 років тому

      Dr. Peyam's Show ? How does this matter

    • @aliyss
      @aliyss 6 років тому

      ​@@avdrago7170 --> I think ​ Dr. Peyam's Show meant R^2.

  • @fardinzaman904
    @fardinzaman904 5 років тому +1

    Thank you very much . Absolutely clear and easy . You saved me

  • @Loathepotion
    @Loathepotion 7 років тому +2

    This was good-you kinda didn't address the part where you wrote out a piece (cut off for some reason)but good stuff.

  • @favoriteflavor46
    @favoriteflavor46 6 місяців тому

    camera man just watches like others in that room.

  • @arjunnarasimhan8027
    @arjunnarasimhan8027 2 роки тому

    What was your thought process behind Step 1? How did you get (u+tv)(u+tv)?

  • @sweetychaudhary277
    @sweetychaudhary277 2 роки тому +1

    thanks 😊 your video help me a lot to understand this proof ☺️

  • @LegendOfMurray
    @LegendOfMurray 7 років тому +1

    great proof, Dr. Peyam!

  • @mathunt1130
    @mathunt1130 3 роки тому

    You can reduce the proof to a line using geometric algebra.

    • @drpeyam
      @drpeyam  3 роки тому

      How?

    • @mathunt1130
      @mathunt1130 3 роки тому

      @@drpeyam Simply take two vectors U and V and examine the product (UV)(VU) and expand using the geometric product. In a few simple steps (on one line) you get |U|^2|V|^2=(U.V)^2+|UxV|^2>= (U.V)^{2}

  • @NabeelMustafaSMM
    @NabeelMustafaSMM 6 років тому

    please make video on Minkowski inequality ..I really missed that

  • @railgun.__.7055
    @railgun.__.7055 5 років тому +1

    Luckily we do not have to prove it in high school.
    (It was a question in AL Pure Maths)

  • @Zhinoi
    @Zhinoi Рік тому

    This is a really nice and neat proof

  • @drandrewsanchez
    @drandrewsanchez 7 років тому

    I have a question. By listing the three inequalities regarding the descriminant, aren't you fixing the vectors in R2. Would this proof still be valid for vectors in R3 or RN?

    • @TheRedfire21
      @TheRedfire21 7 років тому

      yes since you are only working on the real plane; modulus of u and v are real numbers, the dot product of u.v are real numbers, and t is an scalar.

    • @drpeyam
      @drpeyam  7 років тому

      SanCHEneering It's valid in all of R^n :) The polynomial is quadratic, but the vectors u and v are in R^n

    • @leonardromano1491
      @leonardromano1491 7 років тому +1

      Do they need to explicitly be in R^n? Wouldn't it be sufficient to be on a real-scalar-product-space?

    • @drpeyam
      @drpeyam  7 років тому

      That's correct, it works on any real inner product space!

  • @TheRedfire21
    @TheRedfire21 7 років тому +1

    hi peynam could you proof this by definition of the dot product? or does it restrict your proof?
    ex: |u.v| = (by definition) ||u|| ||v|| cos@ ≤ (since cos@ is between 0 and 1) ||u|| ||v||

    • @drpeyam
      @drpeyam  7 років тому +2

      Sebastian Cor Your proof is correct, but only works in R^2; this proof is valid for more general dot products!

    • @leonardromano1491
      @leonardromano1491 7 років тому +2

      Actually the angle is defined through the Cauchy-Schwarz-Inequality so you can't define it the other way around.
      ( |uv|≤||u|| ||v|| -> -1≤uv/(||u|| ||v||) ≤ 1 and -1≤cos(phi)≤1 so there exists an open set U where for all phi in U cos(phi)=uv/(||u|| ||v||) )
      The Proof only works for real Dotproducts because complex ones also conjugate the left vector.

  • @sunbreezy3935
    @sunbreezy3935 5 років тому

    Thank you very much. This is an excellent clear proof. Is there any chance that you could also do a proof of the Minkowski inequality.

  • @kenmeyer100
    @kenmeyer100 5 років тому

    Wow, someone who actually pronounces both names correctly

  • @syahimiafiq5914
    @syahimiafiq5914 5 років тому +4

    I've show my cat this proof
    Now she still a cat

  • @DavidPumpernickel
    @DavidPumpernickel 3 роки тому

    dank, this works for non-euclidean metrics, too

  • @ndriqa
    @ndriqa 5 років тому +1

    Thank you!!! Great channel ❤️

  • @tmogoreanu
    @tmogoreanu 7 років тому +1

    Can you please make a video with Newton-Leibniz formula proof?

    • @drpeyam
      @drpeyam  7 років тому

      Anatolie Mogoreanu The proof of the product rule? I think you've read my mind, because it's coming on Friday :)

    • @tmogoreanu
      @tmogoreanu 7 років тому +1

      Actually I meant the definite integral calculation formula F(b)-F(a)

    • @drpeyam
      @drpeyam  7 років тому

      Ooooh, the FTC!!! It's on my to-do list :P

    • @tmogoreanu
      @tmogoreanu 7 років тому

      Great! Thanks in advance)

  • @abstractalien12345
    @abstractalien12345 5 років тому

    Thank you so much! Greetings from Chicago :)

    • @drpeyam
      @drpeyam  5 років тому +1

      The city of Lou Malnati’s 😋😋😋

  • @varungoyal4732
    @varungoyal4732 6 років тому

    thanks alot Dr Peyam.
    this video helped me alot.

  • @fellipetoffolo4226
    @fellipetoffolo4226 3 роки тому

    very nice, but wouldn't the complex values of t contradict something? Or its okay because (u+tv)(u+tv) is the norm of something, thus will be real anyway?

  • @ayushdudhani
    @ayushdudhani 5 років тому

    But sometimes after taking square roots inequality sign changes doesn't it??

    • @drpeyam
      @drpeyam  5 років тому

      No, things are positive here

    • @ayushdudhani
      @ayushdudhani 5 років тому

      @@drpeyam not getting can u explain it in detail

  • @stevekaszycki8629
    @stevekaszycki8629 5 років тому +1

    neat proof! and it comes with at least two bad puns.

  • @aryammlg6833
    @aryammlg6833 5 років тому +1

    Great proof, but it would be even better if u had gone over the equality case and shown that it only happens when one is a scalar multiple of the other
    👍💕💕

  • @pibeeulotro9603
    @pibeeulotro9603 5 років тому

    Beautiful proof, thanks.

  • @vijay85321
    @vijay85321 7 місяців тому

    I got a little but happy to see the proof!

  • @mihlalimjacu6984
    @mihlalimjacu6984 2 роки тому

    thank you sir this is so much clear☺

  • @boydmwansa8750
    @boydmwansa8750 10 місяців тому

    Very nice proof indeed so easy to understand

  • @inthebackwiththerabbish
    @inthebackwiththerabbish 4 роки тому

    8:12 baby don't hurt me

  • @MathematicsMadeSimple1
    @MathematicsMadeSimple1 2 роки тому

    Good presentation!

  • @luizr.8316
    @luizr.8316 7 років тому +2

    Divertido e fantástico! Parabéns pelo trabalho!

  • @jennifera.3208
    @jennifera.3208 8 місяців тому

    very good explanation :)

  • @TruongNguyen-pl9cd
    @TruongNguyen-pl9cd 4 роки тому

    why can u use the disciminant ? and why it have to be less then 0

    • @drpeyam
      @drpeyam  4 роки тому

      That’s the magical part about the proof. And it’s negative because otherwise there would be 2 roots, so at least somewhere the function would be negative

    • @TruongNguyen-pl9cd
      @TruongNguyen-pl9cd 4 роки тому

      @@drpeyam okay but how can I explain in my proof ? We just can use the discriminant ? Same like we use root and so on ?

    • @drpeyam
      @drpeyam  4 роки тому +1

      If you want do a contradiction. You have a quadratic function in t, and if the discriminant is positive then you would have 2 roots, which gives a contradiction etc

  • @danieledwin8927
    @danieledwin8927 3 роки тому

    If you want to prove it for two real numbers are you allowed to say the numbers are just vectors with one component? If not make a video with the proof for the case for two numbers, preferrably from the axioms

    • @drpeyam
      @drpeyam  3 роки тому

      For real numbers the statement is trivial, it becomes |ab|

  • @gabrielnegrini8889
    @gabrielnegrini8889 10 місяців тому

    amazing explanation

  • @mokoepa
    @mokoepa 3 роки тому

    This is beautiful... Perfection...

  • @伊藤暉人-s6w
    @伊藤暉人-s6w 4 роки тому

    数学が世界共通言語って感じがして最高。普段コーシーシュワルツの不等式、と書いていますが英字で書きたいなと思い英語で検索しました。高校生です

  • @michaelsohnen6526
    @michaelsohnen6526 7 років тому

    why not start a proof from the fact that "A dot B = ||A|| ||B|| cos(theta)" ?

  • @alimghazzawi3700
    @alimghazzawi3700 4 роки тому

    At first glims i thought of course it’s smaller or equal because the dot product value equals the multiplication of the brooms times cos theta and cos theta its biggest value 1 and smallest value is-1 but i dont know of course there is a reason why this isn’t a valid proof i don’t understand high level algebra i am an engineer student.

  • @MrJapogm
    @MrJapogm 7 років тому +1

    This channel is also very cool

  • @jonsnow9246
    @jonsnow9246 6 років тому

    More videos on Maths!

  • @malicksoumare370
    @malicksoumare370 7 років тому +3

    amazing! The other proofs are just incomprehensible

  • @PervezAli112
    @PervezAli112 7 років тому

    sir its awesome proof

  • @witthawasphanthawimol5534
    @witthawasphanthawimol5534 3 роки тому

    Thank you very much😊

  • @joshuafreeman9532
    @joshuafreeman9532 4 роки тому

    absolute genius

  • @andreaLA222
    @andreaLA222 3 роки тому

    Thanks for the video!

  • @martinsaidi1303
    @martinsaidi1303 3 роки тому

    neatly done, heyy!!

  • @hazza6915
    @hazza6915 6 років тому

    Thinking about the square root step. x^2=y^2 doesn’t necessarily imply x=y

  • @fredericchopin255
    @fredericchopin255 6 років тому

    9:17 no supreme t-shirt mmmm

  • @ronoguern
    @ronoguern 3 роки тому

    You are great! Thanks!

  • @azizketata3241
    @azizketata3241 2 роки тому

    i like your energy .

  • @NabeelMustafaSMM
    @NabeelMustafaSMM 6 років тому

    excellent way

  • @chelangatedwin6112
    @chelangatedwin6112 3 роки тому +1

    👍👍👍 your the best

  • @fountainovaphilosopher8112
    @fountainovaphilosopher8112 7 років тому +1

    Hello!

  • @OmarOmar-cj9rk
    @OmarOmar-cj9rk 5 років тому

    هل تتكلم اللغة العربية؟

    • @joudy5767
      @joudy5767 4 роки тому

      نعم

    • @OmarOmar-cj9rk
      @OmarOmar-cj9rk 4 роки тому

      لقد مضى على هذا التعليق عام، وها أنت ذا يا joudy تستمتع بمشاهدة هذا المقطع الممتع.
      وفقك الله وسهل لك طريقا تلتمس فيه علما نافعا.

  • @koungmeng
    @koungmeng 5 років тому

    wow blackpenredpen is in your vdo nice

  • @jgoep2310
    @jgoep2310 5 років тому

    You're great!

  • @vecter
    @vecter 7 років тому +1

    That's a great proof and all but what in god's name motivated that initial formula to begin with? This is what makes people think math is so inaccessible. Once you come up with that formula, everything else is just algebra, but no insight is given into the intuition or meaning behind the original key formula.

    • @drpeyam
      @drpeyam  7 років тому +2

      It's actually extremely useful in Analysis and Partial Differential Equations when you want to estimate the product of two things!
      Basically, think of it as follows: For a function f, let ||f|| = the square root of the integral of (f(x))^2, which you can think of as the 'energy' of f. Similarly we can define the energy of g, and finally define f . g = integral of f(x) g(x), which you can think of as the 'interaction' between f and g.
      Now suppose that f and g have finite energies, that is ||f|| < oo and ||g|| < oo, then the C-S inequality says that
      |f.g|

    • @vecter
      @vecter 7 років тому +1

      Thanks for that lengthy reply! I wasn't talking about the CS inequality itself which is immensely useful, I'm talking about the formula you introduce at 3:00. That is a black magic equation from which the proof magically falls out. What is the motivation or intuition behind the starting point of this proof?

    • @drpeyam
      @drpeyam  7 років тому +1

      Oh, I see! I agree, I did kinda pull it out of my hat, which makes the proof magical :P But I guess the intuition is that you want some inequality involving u and v, and that formula provides us with a good starting point!

    • @vecter
      @vecter 7 років тому +1

      Surely there must be some geometric intuition behind it also? I'll think more about it, but the intuition you just mentioned isn't really much of an answer tbh. I feel like the key ideas behind proofs always have some intuition behind them, which is what originally drove the person who dicovered that proof.

    • @0x8055
      @0x8055 7 років тому

      it dare saying it comes from phisics as dr peyam stated. im my engeneering classes as good as 15yrs ago i remember thinking something like "thats obvious, u always lose some energy on the interaction". so as phisics is a good client for math its good to have vectors abeying cs inequality.

  • @ketara1234od
    @ketara1234od 3 роки тому

    THANK YOU !

  • @joshuafreeman9532
    @joshuafreeman9532 4 роки тому

    mind frickin blown

  • @souverain1er
    @souverain1er 5 років тому

    Very nice

  • @teshh_958
    @teshh_958 Рік тому

    its a great show im happy😅😅

  • @wreza97
    @wreza97 3 роки тому

    WooooooW 🙏❤️

  • @couldia_chan6310
    @couldia_chan6310 Рік тому

    GOOD!我靠,这证明可以,挺好的。

  • @rasikajayathilaka3516
    @rasikajayathilaka3516 4 роки тому

    He was very good!

  • @1erbacinternational635
    @1erbacinternational635 5 років тому

    عندكم الاساتدة بحال الحماااااق

  • @prozpectyoung0558
    @prozpectyoung0558 7 років тому +2

    1
    St

  • @ANONBTC-y1r
    @ANONBTC-y1r Рік тому

    Wow super clever wowoww