Functional Analysis 10 | Cauchy-Schwarz Inequality

Поділитися
Вставка
  • Опубліковано 23 лип 2024
  • 📝 Find more here: tbsom.de/s/fa
    👍 Support the channel on Steady: steadyhq.com/en/brightsideofm...
    Other possibilities here: tbsom.de/sp
    You can also support me via PayPal: paypal.me/brightmaths (Use "For friends and family" as payment type)
    Or via Ko-fi: ko-fi.com/thebrightsideofmath...
    Or via Patreon: / bsom
    Or via other methods: thebrightsideofmathematics.co...
    Please consider to support me if this video was helpful such that I can continue to produce them :)
    Each supporter gets access to the additional material. If you need more information, just send me an email: tbsom.de/s/mail
    Watch the whole video series about Functional Analysis and download PDF versions and quizzes: tbsom.de/s/fa
    Supporting me via Steady is the best option for me and you. Please consider choosing a supporter package here: tbsom.de/s/subscribe
    🌙 There is also a dark mode version of this video: • Functional Analysis 10...
    🔆 There is also a bright mode version of this video: • Functional Analysis 10...
    🔆 To find the UA-cam-Playlist, click here for the bright version: • Functional analysis
    🌙 And click here for the dark version of the playlist: • Functional Analysis [d...
    🙏 Thanks to all supporters! They are mentioned in the credits of the video :)
    This is my video series about Functional Analysis where we start with metric spaces, talk about operators and spectral theory, and end with the famous Spectral Theorem. I hope that it will help everyone who wants to learn about it.
    x
    00:00 Introduction
    00:25 Cauchy-Schwarz inequality
    02:00 Proof
    08:15 Triangle inequality for the norm
    #FunctionalAnalysis
    #Mathematics
    #LearnMath
    #calculus
    I hope that this helps students, pupils and others. Have fun!
    (This explanation fits to lectures for students in their first and second year of study: Mathematics for physicists, Mathematics for the natural science, Mathematics for engineers and so on)

КОМЕНТАРІ • 63

  • @zafarsaifi4542
    @zafarsaifi4542 3 роки тому +6

    You're the man hahaha this is the most comprehensible real and functional analysis course video set ever. It helps a ton to demystify the more technical and rigorous definitions from the course itself. Thank you!!!!

  • @elmastrolazo
    @elmastrolazo 3 роки тому +32

    Wouldn´t it be a great idea to start lectures on Differential Geometry? Humble request!

  • @jhonmaya7264
    @jhonmaya7264 2 роки тому +3

    Captions really would help people like me, who can't understand English very well. Anyway, love your videos, they are really helpful. Thanks a lot.

    • @brightsideofmaths
      @brightsideofmaths  2 роки тому +3

      Thanks! Some nice subscribers always provide subtitles but they are not available for all videos yet. I am sure that they will come :)

  • @_madoggie_9367
    @_madoggie_9367 2 роки тому +1

    Thanks to you

  • @PunmasterSTP
    @PunmasterSTP 2 роки тому +1

    Cauchy-Schwarz? More like “cool and smart!” I’m loving your videos; keep up the amazing work.

    • @afaale1
      @afaale1 Рік тому +1

      cringe

    • @PunmasterSTP
      @PunmasterSTP Рік тому +1

      @@afaale1 Then my work here is done 😎

  • @ChristopherZAR
    @ChristopherZAR 2 роки тому +4

    Very high quality videos all of these, much impressed! Doing a course on Functional Analysis right now and needed to refresh my basic knowledge and this is helping a lot

    • @PunmasterSTP
      @PunmasterSTP 2 роки тому

      How did the rest of your course go?

    • @ChristopherZAR
      @ChristopherZAR 2 роки тому +1

      @@PunmasterSTP Not that great because I found I was still a bit underprepared, but I thoroughly enjoyed it anyway. Thanks for asking!

    • @PunmasterSTP
      @PunmasterSTP 2 роки тому

      @@ChristopherZAR I'm glad it was enjoyable, and you are most welcome for my asking!

  • @joshuaowoyemi90
    @joshuaowoyemi90 2 роки тому +3

    amazing job. though i still have some difficulties understanding it. how do i get the PDF for better study? thank you

    • @brightsideofmaths
      @brightsideofmaths  2 роки тому +3

      Thanks! The PDF is the description with a link on Steady :)

  • @zazinjozaza6193
    @zazinjozaza6193 3 роки тому +4

    These videos are so cool!

  • @duchengp2422
    @duchengp2422 2 роки тому +1

    can you explain why we conjugate the after we pull out from the 2*Re(...)?

    • @StratosFair
      @StratosFair 2 роки тому

      Go back to the previous video where Hilbert spaces are introduced. If we are on the complex field, we always have to conjugate when multiplying one of the arguments by a scalar. It is to ensure the positive definiteness of the inner product

  • @Hold_it
    @Hold_it 3 роки тому +3

    Wow, two videos in a row. How did we deserve that? :D
    Great Video!

  • @ffar2981
    @ffar2981 Рік тому

    First of all, and as always, thanks for the nice video :-)
    7:09 To go from 1. to 2. line you use linearity in the second argument and from 2. to 3. you use linearity in the first argument. Isn't there a complex conjugate missing at some point?

    • @brightsideofmaths
      @brightsideofmaths  Рік тому +1

      The complex conjugation is there. Note that in the absolute value and in the real part it does not make a difference.

  • @yBazo82
    @yBazo82 3 роки тому +3

    Keep it lit mate

  • @azhakabad4229
    @azhakabad4229 3 роки тому +5

    Hello sir,
    I love your content and way of teaching so please sir start sessions on discrete mathematics! Humble request

  • @drakezhard
    @drakezhard 2 роки тому +2

    Thank you this is very nice. Your measure theory course is very nice as well.

  • @scienceoftheheart8759
    @scienceoftheheart8759 Рік тому

    So good, what program you using to make the videos?

  • @tarekhaniea2211
    @tarekhaniea2211 Рік тому

    What prerequisites do I need to fully understand this proof?

  • @jared805
    @jared805 3 роки тому +4

    I thought it was quite intuitive the way you built metric > norm > inner product
    Are there any good reasons to go the opposite direction? That what my linear algebra book does

    • @brightsideofmaths
      @brightsideofmaths  3 роки тому +4

      The other way starts with a well-known structure and goes to extract some essential parts. My way was building a house from the ground with each floor. The other way is looking at a finished house and what the components are. Both ways are fine, I guess :)

    • @jared805
      @jared805 3 роки тому +3

      @@brightsideofmaths for the record i much prefer yours

    • @AlekFrohlich
      @AlekFrohlich 3 роки тому +1

      @@jared805 Take a look at Linear Algebra done right (ch. on inner product spaces); there you'll find a very good presentation of the opposite direction.

  • @realAhmedAbdElGhany
    @realAhmedAbdElGhany 2 роки тому +1

    it was much easier to prove it by 0 . and using the solution to the polynomial b ^2 - 4ac

  • @iusong691
    @iusong691 2 роки тому

    Maybe starting from the norm of y parallel is less or equal to the norm of y, then square the both side, would be much easier to complete the proof.

    • @brightsideofmaths
      @brightsideofmaths  2 роки тому

      Why do you know that the norm of y parallel is less or equal to the norm of y?

  • @jaimelima2420
    @jaimelima2420 3 роки тому +2

    Hi, Thanks again for the clear explanations. By the way, are you planning to talk about Hölder's inequality also?

    • @brightsideofmaths
      @brightsideofmaths  3 роки тому +2

      Yeah, of course. This is coming after the inner products :)

  • @vojtechvocadlo7985
    @vojtechvocadlo7985 2 роки тому

    Why is that the complex conjugation of scaler product at 6:40 ??? I thought that complex conjugation is needed in the second part of the product. aha in this they do it in the first part not in the second, ok.

  • @deansmith7163
    @deansmith7163 6 місяців тому

    Just some minor feedback. The red, green and orange line colors could be changed. There may be viewers with color perception issues,

  • @xwyl
    @xwyl 2 роки тому

    The proof looks highly constructed and counterintuitive. Is there a natural way to prove it?

    • @brightsideofmaths
      @brightsideofmaths  2 роки тому +1

      I tried to make it intuitive. In my opinion, this is the most natural proof for the inequality.

    • @xwyl
      @xwyl 2 роки тому

      @@brightsideofmaths This proof looks like a byproduct of calculating the norm of the orthogonal part. And in this process, Pythagoras theorem is also proved.
      But I want an intuitive method. The most important thing to use is linearity, we can safely assume ||x||=1 and transform the original inequality to ^2=p^2=^2 (because o is orthogonal to x). This proof also relies on linearity and positivity.
      In my proof I didn't consider complex numbers.

  • @ajitj2562
    @ajitj2562 3 роки тому +2

    Your videos are outstanding; Please start lecture on Differential equations.

  • @unbelievableHoruz
    @unbelievableHoruz 3 роки тому +1

    AHHH MATHE

  • @StratosFair
    @StratosFair 3 роки тому +2

    Very nice video, a quicker way to show the CS inequality is to consider the function that maps any real number t to norm(x + ty)^2
    Using the properties of the scalar product, we can see that this function is a second order nonnegative polynomial in t
    Non-negativity implies then that its discriminant is lesser or equal to 0, which directly yields the desired inequality

  • @bongmatho
    @bongmatho 9 місяців тому

    6:25 why conjugate comes out?

    • @brightsideofmaths
      @brightsideofmaths  9 місяців тому

      This is in the definition of the inner product: it's antilinear in the first argument.

    • @bongmatho
      @bongmatho 9 місяців тому

      @@brightsideofmaths in wikipedia conjugate comes out if it is in the second place not in the first place in inner product could you check it sir?

    • @brightsideofmaths
      @brightsideofmaths  9 місяців тому

      I am not the author of this wikipedia article ;)
      You can check my video about the definition of the inner product. The thing is that two different definitions are in common use.

    • @bongmatho
      @bongmatho 9 місяців тому

      @@brightsideofmaths oh ill see ill check it later and ill subscribe now good day

  • @asyareedus
    @asyareedus 2 роки тому

    is that a german accent? sry cant overhear it^^

    • @brightsideofmaths
      @brightsideofmaths  2 роки тому +1

      Yeah, it is! Glad you notice it. I don't try to cover it :D

    • @asyareedus
      @asyareedus 2 роки тому

      @@brightsideofmaths yeah no need to cover it anyways^^ thank you for the video

  • @user-tn8cd1hb6h
    @user-tn8cd1hb6h 25 днів тому

    А БУНЯКОВСКИЙ ГДЕ БЛЯТЬ???

  • @tianchengxue5377
    @tianchengxue5377 Рік тому

    I think a more elegant proof for Cauchy-Schwartz is to use the quadratic formula: ghomi.math.gatech.edu/LectureNotes/LectureNotes0U.pdf