The Two Stage Simplex Method

Поділитися
Вставка
  • Опубліковано 25 лис 2024

КОМЕНТАРІ • 39

  • @bulldogwuffwuff1642
    @bulldogwuffwuff1642 2 роки тому +13

    my brain when simplex

    • @Charles_Reid
      @Charles_Reid 6 місяців тому +1

      Checking the vertices of the convex octagon I see. You’re catching on!

  • @Isabellaa-ms5dk
    @Isabellaa-ms5dk Рік тому

    this video is the best... thank you so much for saving my grade!!!

  • @huichen6461
    @huichen6461 3 роки тому +3

    Great demonstration

  • @PunmasterSTP
    @PunmasterSTP 3 роки тому +4

    Tableau? More like tabl-oh yeah, because this video was awesome; thanks for posting it!

    • @mathshelpwithmrorys8555
      @mathshelpwithmrorys8555  3 роки тому +2

      Ha ha. Thanks for the great comment! I'm glad it was useful to you.

    • @PunmasterSTP
      @PunmasterSTP 3 роки тому

      @@mathshelpwithmrorys8555 You are most welcome, and I can keep those kinds of comments up if you'd be interested...

    • @daniniamut1362
      @daniniamut1362 7 місяців тому +1

      I don't get it, can you explain?

    • @PunmasterSTP
      @PunmasterSTP 7 місяців тому

      @@daniniamut1362 No problem. "Tableau" is another term that's used to refer to the matrix of coefficients in the simplex method.

  • @mlpnkobjiv
    @mlpnkobjiv 3 роки тому +2

    Your voice is amazing 💕 Can you also make a video about post optimality analysis??

  • @thompyle7636
    @thompyle7636 Місяць тому

    Brilliant video, thanks :)

  • @steelboy1164
    @steelboy1164 5 місяців тому

    Man saved my exam

  • @realcirno1750
    @realcirno1750 4 роки тому +4

    THANKS FOR THIS!!!

  • @alimurtaza890
    @alimurtaza890 3 роки тому +2

    thank you

  • @birgirjohannesjonsson5434
    @birgirjohannesjonsson5434 2 роки тому

    Great explanation. Thank you :)

  • @timelygoose
    @timelygoose Рік тому

    Thank you sir

  • @matheussoffiati2944
    @matheussoffiati2944 4 роки тому +3

    Whats the purpose of minimising artificial variables? I dont understand the link between minimal artificial variables and a feasible solution

    • @Xcess007
      @Xcess007 4 роки тому +2

      we introduced them to be able to solve it with SIMPLEX. They should be zero if we want a real-world answer.
      Another way you can look at it is this:
      You extend the feasible region to include the (0,0) region up to it (so you can use simplex), then you minimize artificial variables first to get out of that zone and get to the real feasible zone. Then stage 2 starts and you can move around the corners to find the best solution.

  • @navzz2678
    @navzz2678 3 роки тому +2

    is it possible to have a value of 0 for the I row but still have negative values? if so would you just continue until there are no more negative values in the I row ?

    • @mathshelpwithmrorys8555
      @mathshelpwithmrorys8555  3 роки тому +1

      Yes, it is possible. Once the I row has a value of 0, we have a basic feasible solution, remove the I row, and the artificial variable columns, then move into the second stage.

  • @abanoubmagdy974
    @abanoubmagdy974 Рік тому

    this vid is outstandingly easy to follow and comprehend huge thanks !! Question which text book follow this methodology ?? as I've been following along with professor Hamdy Taha's Book of OP Research
    Thanks Again :) .

    • @theavocado7296
      @theavocado7296 Рік тому

      This is primarily focused for students who are taking A-level further Maths, it is present in the Edexcel Decision 1 textbook chapter 7

  • @Sam-yr9gf
    @Sam-yr9gf Рік тому

    2:00 how is it possible for x and y to be 0, wouldn't that violate the constraint?

  • @othusitsemolokele4659
    @othusitsemolokele4659 2 роки тому

    So if it was a maximise problem the we'd just work with P? No need to set it to something like with example

  • @xKibz
    @xKibz 4 роки тому +5

    So if "I" equals the negative sum of artificial values, if there is one artificial value will "I" equal -(a1) ? and if there is three artificial values will I = -(a1 + a2 + a3) ?

  • @ratofalady8125
    @ratofalady8125 2 роки тому +1

    Is I always being set up to be minimising so always -(a1 + a2)

    • @mathshelpwithmrorys8555
      @mathshelpwithmrorys8555  2 роки тому +1

      Yes, exactly that.

    • @ratofalady8125
      @ratofalady8125 2 роки тому

      @@mathshelpwithmrorys8555 so you can never be given a maximising problem that includes I ?

    • @ratofalady8125
      @ratofalady8125 2 роки тому +1

      @@mathshelpwithmrorys8555 so you can never be given a maximising problem that includes I ?

    • @mathshelpwithmrorys8555
      @mathshelpwithmrorys8555  2 роки тому

      @@ratofalady8125 No, that is not the case. You will have to use the standard methods for dealing with a maximising and minimising problem and combine that with I. If you are unsure about how to approach maximising, please watch my video which has both maximising and minimising. ua-cam.com/video/t0NkCDigq88/v-deo.html

  • @jamesmcgurrin8160
    @jamesmcgurrin8160 Рік тому

    how do you use I if it's for a maximisation question? Thank you

  • @SamAX5444
    @SamAX5444 2 роки тому

    It wasn’t clear how you picked the basic variables?

    • @othusitsemolokele4659
      @othusitsemolokele4659 2 роки тому

      The columns with only1's and 0's are your basic variables

    • @SamAX5444
      @SamAX5444 2 роки тому

      @@othusitsemolokele4659 for the basic var. column when constructing the first tableau 3:07