Data Cleaning

Поділитися
Вставка
  • Опубліковано 14 січ 2025
  • #Below is the code used in the video
    """
    @author: ambi
    copyright = "Copyright (C) Ambi"
    """
    #TOPIC 1 : Visualize Missing values
    #TOPIC 2 : Dealing with unusual values
    #TOPIC 3 Dealing with Missing Data, drop them or replace with mean/median/mode
    #TOPIC 4 : Dealing with Outliers
    #TOPIC 5 : Dealing with duplicates
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    df=pd.read_excel('small_iris_dataset_demo_for_cleaning.xlsx')
    df.info()
    dfOriginal=df.copy()
    plt.figure()
    sns.heatmap(df.isna())
    colName='sepal_length'
    for x in df.index:
    if df.loc[x,colName] lessthan 0 or df.loc[x, colName] moreThan 400:
    df.loc[x,colName]= pd.NA
    df.info()
    num_missing_values=df.isnull().sum()
    print(num_missing_values)
    df.dropna(inplace=True)
    lower_limit=df[colName].quantile(0.01)
    upper_limit=df[colName].quantile(0.99)
    df_filtered=df[(df[colName] lessThan upper_limit ) & (df[colName] moreThan lower_limit )]
    df.boxplot(colName)
    df_filtered.boxplot(colName)
    df_cleaned=df_filtered.drop_duplicates()

КОМЕНТАРІ •