Розмір відео: 1280 X 720853 X 480640 X 360
Показувати елементи керування програвачем
Автоматичне відтворення
Автоповтор
If you didn't spot the trick of factoring the numerator, a first pass using polynomial long division would also be a good first step for this integral.At 5:59 - the absolute value bars aren't needed in the ln, since x²+1 is always positive.
(x³)/(x²+1)=(x³+x-x)/(x²+1)=x-(x)/(x²+1)=x-(1/2)*[(2x)/(x²+1)]So the integral of the function is equal tox²/2-(1/2)ln(x²+1)+c
Nice integral
∫x³/(x²+1)*dx = ------------------Substitution: u = x²+1 x² = u-1 du = 2x*dx dx = du/(2x)------------------= 1/2*∫x³/u*du/x = 1/2*∫x²/u*du = 1/2*∫(u-1)/u*du = 1/2*[∫u/u*du-∫1/u*du] = 1/2*[∫du-∫1/u*du] = 1/2*[u-ln|u|+K]= 1/2*[x²+1-ln|x²+1|]+C
If you didn't spot the trick of factoring the numerator, a first pass using polynomial long division would also be a good first step for this integral.
At 5:59 - the absolute value bars aren't needed in the ln, since x²+1 is always positive.
(x³)/(x²+1)=(x³+x-x)/(x²+1)=x-(x)/(x²+1)=x-(1/2)*[(2x)/(x²+1)]
So the integral of the function is equal to
x²/2-(1/2)ln(x²+1)+c
Nice integral
∫x³/(x²+1)*dx =
------------------
Substitution: u = x²+1 x² = u-1 du = 2x*dx dx = du/(2x)
------------------
= 1/2*∫x³/u*du/x = 1/2*∫x²/u*du = 1/2*∫(u-1)/u*du
= 1/2*[∫u/u*du-∫1/u*du] = 1/2*[∫du-∫1/u*du] = 1/2*[u-ln|u|+K]
= 1/2*[x²+1-ln|x²+1|]+C