Integral of (x^3)/(x^2 + 1)

Поділитися
Вставка
  • Опубліковано 31 гру 2024

КОМЕНТАРІ • 4

  • @d-hat-vr2002
    @d-hat-vr2002 2 дні тому +2

    If you didn't spot the trick of factoring the numerator, a first pass using polynomial long division would also be a good first step for this integral.
    At 5:59 - the absolute value bars aren't needed in the ln, since x²+1 is always positive.

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب 2 дні тому +2

    (x³)/(x²+1)=(x³+x-x)/(x²+1)=x-(x)/(x²+1)=x-(1/2)*[(2x)/(x²+1)]
    So the integral of the function is equal to
    x²/2-(1/2)ln(x²+1)+c

  • @mathpro926
    @mathpro926 2 дні тому

    Nice integral

  • @gelbkehlchen
    @gelbkehlchen 2 дні тому +2

    ∫x³/(x²+1)*dx =
    ------------------
    Substitution: u = x²+1 x² = u-1 du = 2x*dx dx = du/(2x)
    ------------------
    = 1/2*∫x³/u*du/x = 1/2*∫x²/u*du = 1/2*∫(u-1)/u*du
    = 1/2*[∫u/u*du-∫1/u*du] = 1/2*[∫du-∫1/u*du] = 1/2*[u-ln|u|+K]
    = 1/2*[x²+1-ln|x²+1|]+C