Calculus Booster
Calculus Booster
  • 274
  • 255 049
Integral of sin(x)/sin(3x)
GET MY EBOOKS
•••••••••••••••••••••••
150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2
Function : payhip.com/b/ytewk
Sequence and Series : payhip.com/b/BKljT
Differentiation : payhip.com/b/Wm2YH
Indefinite Integration : payhip.com/b/8Ib2B
Definite Integration + Area under the Curve : payhip.com/b/1gOtk
Trigonometry : payhip.com/b/8UhkS
OTHER CHAPTERS : COMING SOON.....
--------------------------------------------------------------------------------
Переглядів: 401

Відео

Integral of (x - 1)/(x^2 - x + 1)
Переглядів 6712 години тому
GET MY EBOOKS ••••••••••••••••••••••• 150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2 Function : payhip.com/b/ytewk Sequence and Series : payhip.com/b/BKljT Differentiation : payhip.com/b/Wm2YH Indefinite Integration : payhip.com/b/8Ib2B Definite Integration Area under the Curve : payhip.com/b/1gOtk Trigonometry : payhip.com/b/8UhkS OTHER CHAPTERS : COMING SOON.....
Integral of (x^2)/(2x^2 + 1)
Переглядів 7194 години тому
GET MY EBOOKS ••••••••••••••••••••••• 150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2 Function : payhip.com/b/ytewk Sequence and Series : payhip.com/b/BKljT Differentiation : payhip.com/b/Wm2YH Indefinite Integration : payhip.com/b/8Ib2B Definite Integration Area under the Curve : payhip.com/b/1gOtk Trigonometry : payhip.com/b/8UhkS OTHER CHAPTERS : COMING SOON.....
A Very Nice Integral Problem From Germany
Переглядів 6467 годин тому
GET MY EBOOKS ••••••••••••••••••••••• 150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2 Function : payhip.com/b/ytewk Sequence and Series : payhip.com/b/BKljT Differentiation : payhip.com/b/Wm2YH Indefinite Integration : payhip.com/b/8Ib2B Definite Integration Area under the Curve : payhip.com/b/1gOtk Trigonometry : payhip.com/b/8UhkS OTHER CHAPTERS : COMING SOON.....
Integral of 1/(1 + sin^2(x))
Переглядів 1,4 тис.9 годин тому
GET MY EBOOKS ••••••••••••••••••••••• 150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2 Function : payhip.com/b/ytewk Sequence and Series : payhip.com/b/BKljT Differentiation : payhip.com/b/Wm2YH Indefinite Integration : payhip.com/b/8Ib2B Definite Integration Area under the Curve : payhip.com/b/1gOtk Trigonometry : payhip.com/b/8UhkS OTHER CHAPTERS : COMING SOON.....
Integral of dx/(x^4 - x)
Переглядів 71612 годин тому
GET MY EBOOKS ••••••••••••••••••••••• 150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2 Function : payhip.com/b/ytewk Sequence and Series : payhip.com/b/BKljT Differentiation : payhip.com/b/Wm2YH Indefinite Integration : payhip.com/b/8Ib2B Definite Integration Area under the Curve : payhip.com/b/1gOtk Trigonometry : payhip.com/b/8UhkS OTHER CHAPTERS : COMING SOON.....
A Very Nice Integral Problem From USA
Переглядів 1,3 тис.14 годин тому
GET MY EBOOKS ••••••••••••••••••••••• 150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2 Function : payhip.com/b/ytewk Sequence and Series : payhip.com/b/BKljT Differentiation : payhip.com/b/Wm2YH Indefinite Integration : payhip.com/b/8Ib2B Definite Integration Area under the Curve : payhip.com/b/1gOtk Trigonometry : payhip.com/b/8UhkS OTHER CHAPTERS : COMING SOON.....
Integral of sqrt(1+sin(x))
Переглядів 69616 годин тому
GET MY EBOOKS ••••••••••••••••••••••• 150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2 Function : payhip.com/b/ytewk Sequence and Series : payhip.com/b/BKljT Differentiation : payhip.com/b/Wm2YH Indefinite Integration : payhip.com/b/8Ib2B Definite Integration Area under the Curve : payhip.com/b/1gOtk Trigonometry : payhip.com/b/8UhkS OTHER CHAPTERS : COMING SOON.....
A Nice Integral Problem From Sweden
Переглядів 1,8 тис.19 годин тому
GET MY EBOOKS ••••••••••••••••••••••• 150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2 Function : payhip.com/b/ytewk Sequence and Series : payhip.com/b/BKljT Differentiation : payhip.com/b/Wm2YH Indefinite Integration : payhip.com/b/8Ib2B Definite Integration Area under the Curve : payhip.com/b/1gOtk Trigonometry : payhip.com/b/8UhkS OTHER CHAPTERS : COMING SOON.....
A Nice Integral Problem From Hungary
Переглядів 90421 годину тому
GET MY EBOOKS ••••••••••••••••••••••• 150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2 Function : payhip.com/b/ytewk Sequence and Series : payhip.com/b/BKljT Differentiation : payhip.com/b/Wm2YH Indefinite Integration : payhip.com/b/8Ib2B Definite Integration Area under the Curve : payhip.com/b/1gOtk Trigonometry : payhip.com/b/8UhkS OTHER CHAPTERS : COMING SOON.....
A Very Nice Integral Problem From Russia
Переглядів 1,1 тис.День тому
GET MY EBOOKS ••••••••••••••••••••••• 150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2 Function : payhip.com/b/ytewk Sequence and Series : payhip.com/b/BKljT Differentiation : payhip.com/b/Wm2YH Indefinite Integration : payhip.com/b/8Ib2B Definite Integration Area under the Curve : payhip.com/b/1gOtk Trigonometry : payhip.com/b/8UhkS OTHER CHAPTERS : COMING SOON.....
Integral of (x^2 - 1)/(x^4 + x^2 + 1)
Переглядів 1,1 тис.День тому
GET MY EBOOKS ••••••••••••••••••••••• 150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2 Function : payhip.com/b/ytewk Sequence and Series : payhip.com/b/BKljT Differentiation : payhip.com/b/Wm2YH Indefinite Integration : payhip.com/b/8Ib2B Definite Integration Area under the Curve : payhip.com/b/1gOtk Trigonometry : payhip.com/b/8UhkS OTHER CHAPTERS : COMING SOON.....
Integral of (x^7 + 1)/(x^3 + 1)
Переглядів 2,3 тис.День тому
GET MY EBOOKS ••••••••••••••••••••••• 150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2 Function : payhip.com/b/ytewk Sequence and Series : payhip.com/b/BKljT Differentiation : payhip.com/b/Wm2YH Indefinite Integration : payhip.com/b/8Ib2B Definite Integration Area under the Curve : payhip.com/b/1gOtk Trigonometry : payhip.com/b/8UhkS OTHER CHAPTERS : COMING SOON.....
Integral of 1/x*ln(x)
Переглядів 464День тому
GET MY EBOOKS ••••••••••••••••••••••• 150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2 Function : payhip.com/b/ytewk Sequence and Series : payhip.com/b/BKljT Differentiation : payhip.com/b/Wm2YH Indefinite Integration : payhip.com/b/8Ib2B Definite Integration Area under the Curve : payhip.com/b/1gOtk Trigonometry : payhip.com/b/8UhkS OTHER CHAPTERS : COMING SOON.....
A Nice Limit Problem From Sweden
Переглядів 43114 днів тому
GET MY EBOOKS ••••••••••••••••••••••• 150 Challenging Puzzles with Solutions : payhip.com/b/y9CD2 Function : payhip.com/b/ytewk Sequence and Series : payhip.com/b/BKljT Differentiation : payhip.com/b/Wm2YH Indefinite Integration : payhip.com/b/8Ib2B Definite Integration Area under the Curve : payhip.com/b/1gOtk Trigonometry : payhip.com/b/8UhkS OTHER CHAPTERS : COMING SOON.....
A Nice College Test Integral Problem From Japan
Переглядів 48214 днів тому
A Nice College Test Integral Problem From Japan
A Very Nice Limit Problem From Japan
Переглядів 73214 днів тому
A Very Nice Limit Problem From Japan
Integral of dx/(x^2 - 10x + 21)
Переглядів 48614 днів тому
Integral of dx/(x^2 - 10x 21)
Japanese College Test Integral Problem
Переглядів 67114 днів тому
Japanese College Test Integral Problem
Limit of (x^3 - 4x^2 + 4x)/(x^2 - 4)
Переглядів 48914 днів тому
Limit of (x^3 - 4x^2 4x)/(x^2 - 4)
Integral of sin(x)/(sqrt(1 + cos(x))
Переглядів 43614 днів тому
Integral of sin(x)/(sqrt(1 cos(x))
A Very Nice Integral Problem From Sweden
Переглядів 1,3 тис.14 днів тому
A Very Nice Integral Problem From Sweden
Integral of (x^3)/(x^2 + 1)
Переглядів 86721 день тому
Integral of (x^3)/(x^2 1)
Integral of sin^2(x)/(1 + cos(x))
Переглядів 40821 день тому
Integral of sin^2(x)/(1 cos(x))
Integral of dx/(x^2 + 4x + 8)
Переглядів 49521 день тому
Integral of dx/(x^2 4x 8)
A Nice Integral Problem From Japan
Переглядів 56621 день тому
A Nice Integral Problem From Japan
Integral of cos(sqrt(x))/sqrt(x)
Переглядів 44121 день тому
Integral of cos(sqrt(x))/sqrt(x)
Integral of sqrt(x/(1 - x^3))
Переглядів 72621 день тому
Integral of sqrt(x/(1 - x^3))
Russian College Test Integral Problem
Переглядів 60428 днів тому
Russian College Test Integral Problem
Integral of (x^2 - 2)/(x^2 + 2)
Переглядів 50428 днів тому
Integral of (x^2 - 2)/(x^2 2)

КОМЕНТАРІ

  • @d-hat-vr2002
    @d-hat-vr2002 Годину тому

    1:57 Does anyone remember in which chapter the trick of multiplying numerator and denominator by sec²x is taught to simplify sin²x rationals? It's so unfamiliar!

  • @wonghonkongjames4495
    @wonghonkongjames4495 5 годин тому

    sin dx/ dx = 1, similarly, sin (dx)²/(dx)²=1, therefore, sindx/sin(dx)² =dx÷(dx)²=1/dx=inf

  • @DhdhBdhx-m4z
    @DhdhBdhx-m4z 6 годин тому

    Sanc veru mach

  • @limaroma1
    @limaroma1 7 годин тому

    muy buen desarrollo aunque algo rebuscado ,,,,,,,

    • @d-hat-vr2002
      @d-hat-vr2002 Годину тому

      ¡Así como tantos en este canal!

  • @Ashwinmathsclasses
    @Ashwinmathsclasses 13 годин тому

    Very nice😮😮😮😮😮😮

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب День тому

    6:45 The integration rule can only be used if we replace the variable t=x -1/2

  • @gelbkehlchen
    @gelbkehlchen 2 дні тому

    Solution: ∫x²/(2*x²+1)*dx = ∫x²/[(√2*x)²+1]*dx = -------------- Substitution: u = √2*x x = u/√2 du = √2*dx dx = du/√2 -------------- = 1/(2*√2)*∫u²/[u²+1]*du = 1/(2*√2)*∫[(u²+1)-1]/(u²+1)*du = 1/(2*√2)*{∫(u²+1)/(u²+1)*du-∫1/(u²+1)*du} = 1/(2*√2)*{u-arctan(u)+C} = 1/(2*√2)*u-1/(2*√2)*arctan(u)+C/(2*√2) = 1/(2*√2)*√2*x-1/(2*√2)*arctan(√2*x)+D = 1/2*x-1/(2*√2)*arctan(√2*x)+D Checking the result by deriving: [1/2*x-1/(2*√2)*arctan(√2*x)+D]’ = 1/2-1/(2*√2)*1/[(√2*x)²+1]*√2 = 1/2-1/{2*[(√2*x)²+1]} = {[(√2*x)²+1]-1}/{2*[(√2*x)²+1]} = 2*x²/{2*[2*x²+1]} = x²/(2*x²+1) everything okay!

  • @gelbkehlchen
    @gelbkehlchen 3 дні тому

    Solution: 2 ∫(3-4x)³*dx = -1 ------------------ Substitution: u = 3-4x du = -4*dx dx = -1/4*du upper limit = 3-4*2 = -5 lower limit = 3-4*(-1) = 7 ------------------ -5 7 7 = -1/4*∫u³*du = 1/4*∫u³*du = 1/16*[u^4] 7 -5 -5 = 1/16*[7^4-(-5)^4] = 111

  • @giuseppemalaguti435
    @giuseppemalaguti435 3 дні тому

    (secx)^2/((secx)^2+(tgx)^2)=(secx)^2/(1+2(tgx)^2)..[t=tgx]..dt/(1+2t^2)=(1/2)dt/(t^2+1/2)=>(√2/2)arctg√2t=(1/√2)arctg(√2tgx)

  • @danik0011
    @danik0011 3 дні тому

    Where does supposing x to be equal 3sin(theta) come from?

  • @ernestschoenmakers8181
    @ernestschoenmakers8181 4 дні тому

    Multiply numerator and denominator by sec^2(x) and the rest will follow.

  • @gelbkehlchen
    @gelbkehlchen 4 дні тому

    Solution: 1 ∫x*(1-x)^n*dx = 0 --------------------- Substitution: u = 1-x x = 1-u du = -dx dx = -du upper limit = 1-1 = 0 lower limit = 1-0 = 1 --------------------- 0 1 1 = -∫(1-u)*u^n*du = ∫[u^n-u^(n+1)]*du = [u^(n+1)/(n+1)-u^(n+2)/(n+2)] 1 0 0 = [1^(n+1)/(n+1)-1^(n+2)/(n+2) = 1/(n+1)-1/(n+2) = [1*(n+2)-1*(n+1)]/[(n+1)*(n+2)] = [n+2-n-1]/[(n+1)*(n+2)] = 1/[(n+1)*(n+2)]

  • @d-hat-vr2002
    @d-hat-vr2002 4 дні тому

    √(1+sin(x)) is a tricky function since it's not differentiable at 3π/2 + 2kπ for k∈ℤ Accordingly, even with the correct antiderivative, calculating a definite integral may need to be done piecewise.

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب 5 днів тому

    I tried to find an easier way, but your way is the easiest and most beautiful. May God bless you and grant you health and wellness.

    • @d-hat-vr2002
      @d-hat-vr2002 5 днів тому

      Well at least he didn't make any errors in this video! Maybe partial fractions could work, in terms of easier approach for beginners to try?

    • @ناصريناصر-س4ب
      @ناصريناصر-س4ب 4 дні тому

      ​@@d-hat-vr2002Thank you very much. One should be fair as the solution method was great and did not require the use of partial fractions, so one should not criticize for the sake of criticism.

    • @ناصريناصر-س4ب
      @ناصريناصر-س4ب 4 дні тому

      ​@@d-hat-vr2002The function can be written as a sum of partial fractions where 1/(x⁴-x)=1/(3(x-1))+(2x+1)/(3(x²+x+1))-1/x, and from this the integral of the function is equal to (1/3) ln|x-1|+(1/3)ln(x²+x+1)-ln|x|+C, but as you can see it takes some time.

    • @d-hat-vr2002
      @d-hat-vr2002 4 дні тому

      @@ناصريناصر-س4ب It's actually a pretty typical substitution, behind its seeming novelty. But it's a good reminder that the powers of the substitution and the ' other piece ' for lack of a better term could both be negative powers. It's an important generalization that we should share with our students in their checklist of typical things to look for.

  • @broytingaravsol
    @broytingaravsol 5 днів тому

    not by partial fractions

    • @d-hat-vr2002
      @d-hat-vr2002 5 днів тому

      How about partial fractions by factoring the denominator as x⁴-x = (x)(x-1)(x²+x+1) does that work?

    • @broytingaravsol
      @broytingaravsol 5 днів тому

      @@d-hat-vr2002 i have the result more complicative

    • @d-hat-vr2002
      @d-hat-vr2002 5 днів тому

      ​​@@broytingaravsol But beginners would not think to use the technique shown in the video. Partial fractions has the advantage of being a textbook approach that more people would think to try.

  • @holyshit922
    @holyshit922 5 днів тому

    1. Solution Integration by parts with u=x , dv = (1-x)^{n}dx 2. Solution Substitution u = 1-x

  • @holyshit922
    @holyshit922 5 днів тому

    Integration by parts solves the problem but you avoid it with all costs x^4+1 = (1-x^4)+2x^4 and separate integral into two integrals then integral -\int{\frac{\sqrt{x^4-1}}{x^2}}dx calculate by parts with u = \sqrt{x^4-1} , dv = -\frac{1}{x^2}dx Answer is \frac{\sqrt{x^4-1}}{x}+C

    • @holyshit922
      @holyshit922 5 днів тому

      It is good example for practising integration by parts especially if we teach basics of integral calculus No other techniques necessary so it is good example for teaching integration by parts

    • @d-hat-vr2002
      @d-hat-vr2002 5 днів тому

      Looks clever, but your comment isn't clear or complete. Most normal people learning calculus would not think to rewrite the numerator like that or do integration by parts. It's interesting that if Mr. Calculus Booster had repeated his mistake again at the end, to change his answer into your result, it would accidentally give correct definite integral results.

  • @alexchan4226
    @alexchan4226 5 днів тому

    ((x^4 + 1)/(2x sqrt(x^4 - 1))+ c

  • @d-hat-vr2002
    @d-hat-vr2002 5 днів тому

    2:10 Wrong. There is nothing in the question to suggest that x must be positive, so √(x²) = |x| , not x. Looking at the graph of the integrand, it is positive everywhere it's defined. So any interval where it's defined will have a positive definite integral. But if we try to use the expression boxed at 8:14 to calculate the area under the curve from (for example) -20 to -10 we get a (wrongly) negative answer. This video is a good example of what can go wrong when not thinking clearly about roots of powers! It seems the more intuitive method would be by substitution and working the +x and -x branches as separate integrals. Curiously, if he hadn't stopped at 8:14 but repeated the same mistake by re-writing the final answer as (√(x²-1)) / x he would accidentally found the correct antiderivative. Even so, the fact that the function is undefined on [-1,1] should lead to caution in computing definite integrals.

    • @kevinmadden1645
      @kevinmadden1645 2 дні тому

      Excellent Point! I thought the same thing. gt

  • @Gala_XY
    @Gala_XY 7 днів тому

    the background tone ! likee it 3:01

  • @user_2793
    @user_2793 7 днів тому

    Another interesting problem is the generalisation : x^p(1-x)^q for natural p and q. Edit : Spoilers - (You can solve this entire class of integrals for a fixed p+q)

    • @philipp3761
      @philipp3761 6 днів тому

      Isn't it the beta function?

  • @gelbkehlchen
    @gelbkehlchen 7 днів тому

    Solution: ∫√(1+sin(x))*dx = ------------- Substitution: u = 1+sin(x) sin(x) = u-1 cos(x) = √(1-(u-1)²) = √(1-(u²-2u+1)) = √(2u-u²) du = cos(x)*dx dx = 1/cos(x)*du ------------- = ∫√u*1/√(2u-u²)*du = ∫√[u/(2u-u²)]*du = ∫√[1/(2-u)]*du = ------------- Substitution: z = 2-u dz = -du du = -dz ------------- = -∫1/√z*dz = -∫z^(-1/2)*dz = -2*z^(1/2)+C = -2*√(2-u)+C = -2*√{2-[1+sin(x)]}+C = -2*√{2-1-sin(x)}+C = -2*√[1-sin(x)]+C Checking the result by deriving: {-2*√[1-sin(x)]+C}’ = 2*1/2*1/√[1-sin(x)]*cos(x) = cos(x)/√[1-sin(x)] = √[1-sin²(x)]/√[1-sin(x)] = √{[1-sin²(x)]/[1-sin(x)]} = √{[1+sin(x)]*[1-sin(x)]/[1-sin(x)]} = √(1+sin(x))

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب 7 днів тому

    This result is only true in the interval sin(x/2)+cos(x/2)≥0 because √(a²)=a if a≥0.

    • @d-hat-vr2002
      @d-hat-vr2002 6 днів тому

      Yup, I spotted that at 2:55. For a channel that's supposed to teach correct practices in calculus, that's pretty bad. Did you see I credited your answer in one of my comments on a recent video?

    • @ناصريناصر-س4ب
      @ناصريناصر-س4ب 6 днів тому

      Thank you. Unfortunately, there are errors that appear to be correct, but people do not notice them. For example, if someone writes √x²=x, it is considered correct, but if he writes √x²=-x, any person will see it as incorrect, knowing that the probability of being correct or incorrect in each of them is 50%.​@@d-hat-vr2002

    • @kevinmadden1645
      @kevinmadden1645 Хвилина тому

      Exactly!

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب 7 днів тому

    1+sinx=1+cos(x-π/2)=2cos²(x/2-π/4) [1+cosα=2cos²(α/2)] √(1+sinx)=√2cos(x/2-π/4)(if cos(x/2-π/4)≥0) So the integral of the function is equal to 2√2sin(x/2-π/4)+C

  • @Ki0212
    @Ki0212 7 днів тому

    Beta function

  • @DhdhBdhx-m4z
    @DhdhBdhx-m4z 7 днів тому

    Sancs veru mach

  • @d-hat-vr2002
    @d-hat-vr2002 7 днів тому

    My initial reaction to this video was not positive. Manipulating the expression to set up for the substitution u = x + 1/x at 3:10 requires a clever sequence of steps that a normal person wouldn't think to do. Thus this video has limited value as a teaching tool of generally useful methods of integration. at 0:21 few people would think to make the expression look more messy by factoring and cancelling x² and then at 1:30 few people would think to rewrite the numerator with +1 = +2 -1 and then at 2:02 few people would think to rewrite that 2 as 2⋅x⋅(1/x) That being said, this is not an easy integral using textbook methods most people are familiar with. The "correct" way to work this question is by partial fractions, by factoring the denominator as (x²+x+1)(x²-x+1). Alas, few people would recognize that the denominator could be factored thus. But an earlier commenter provided a technique that normal people would be more likely to notice: x⁴+x²+1 looks a lot like x⁴+2x²+1 which can be written as (x²+1)² So one needs to use only a single "trick", as the other commenter shows: x⁴+x²+1 = x⁴+2x²+1-x² = (x²+1)² - x² That last form is the well-known difference of two squares giving the desired factorization (x²+x+1) ⋅ (x²-x+1) Of course, fully working out the partial factor decomposition requires some algebra, a system of 4 linear equations to find the fractions' numerators, and a couple basic substitution integrals. But once the denominator is factored, it's just a matter of working carefully, not genius.

  • @d-hat-vr2002
    @d-hat-vr2002 7 днів тому

    Very well done, good tutorial. For completeness, one should include calculations for the special cases of n=-1 and n=-2 since the initial question did not exclude these values which make the general answer undefined.

  • @dylangamerplayz4690
    @dylangamerplayz4690 8 днів тому

    When you integrated 1/x with IBP, you left out the absolute value with the ln. Your answer is only true if x>0 and that is the issue I have with the solution.

  • @mdasifeqbal2323
    @mdasifeqbal2323 8 днів тому

    Instead of suppose, you could have directly used the property f(x) = f(a-x)

  • @aesthetics_ai
    @aesthetics_ai 8 днів тому

    that wwas smoth, and im proud i could solve it before seeing the video !

  • @DhdhBdhx-m4z
    @DhdhBdhx-m4z 8 днів тому

    Sancs veru mach

  • @raghvendrasingh1289
    @raghvendrasingh1289 9 днів тому

    ❤ I = integral of (1/x - ln x)/e^x now we have to put denominator in squared form I = integral of { e^(x) (1/x) - ln x (e^x) } e^(2x) I = (ln x)/(e^x) + c

    • @holyshit922
      @holyshit922 5 днів тому

      Quotient rule in reverse Integration by parts is usually derived from product rule but there exists version from quotient rule

  • @gelbkehlchen
    @gelbkehlchen 9 днів тому

    Solution: ∫1/(√x+∛x)*dx = ------------------ Substitution: u = x^(1/6) x = u^6 √x = x^(3/6) = u³ ∛x = x^(2/6) = u² du = 1/6*x^(-5/6)*dx dx = 6*x^(5/6)*du = 6*u^5*du ------------------ = 6*∫u^5/(u³+u²)*du = 6*∫u³/(u+1)*du = ------------------ Substitution: t = u+1 u = t-1 dt = du ------------------ = 6*∫(t-1)³/t*dt = 6*∫(t-1)*(t²-2t+1)/t*dt = 6*∫(t³-3t²+3t-1)/t*dt = 6*∫(t²-3t+3-1/t)*dt = 6*(t³/3-3t²/2+3t-ln|t|+C) = 2t³-9t²+18t-6*ln|t|+6C = 2*(u+1)³-9*(u+1)²+18*(u+1)-6*ln|u+1|+D = 2*(u³+3u²+3u+1)-9*(u²+2u+1)+18*(u+1)-6*ln|u+1|+D = 2u³+6u²+6u+2-9u²-18u-9+18u+18-6*ln|u+1|+D = 2u³-3u²+6u-6*ln|u+1|+D+11 = 2*√x-3*∛x+6*x^(1/6)-6*ln|x^(1/6)+1|+E

  • @giuseppemalaguti435
    @giuseppemalaguti435 9 днів тому

    Integrali razionali...I=(1/2)ln{(x^2-x+1)/(x^2+x+1)}

  • @giuseppemalaguti435
    @giuseppemalaguti435 9 днів тому

    t=x^(1/6)...=>I=2t^3-3t^2+6t-6ln(1+t)=2√x-3x^(1/3)+6x^(1/6)-6ln(1+x^(1/6))+c...dovrei ricontrollare...

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب 11 днів тому

    (x²-1)/(x⁴+x²+1)=(x²-1)/(x⁴+2x²+1-x²)=(x²-1)/((x²+1)²-x²))=(x²-1)/((x²+x+1)(x²-x+1))=(1/2)[(2x-1)/(x²-x+1)-(2x+1)/(x²+x+1)] So the integral of the function is equal to (1/2)[ln|(x²-x+1)/(x²+x+1)|]+C

  • @DAVTARS
    @DAVTARS 11 днів тому

    ngl, this was easy

  • @d-hat-vr2002
    @d-hat-vr2002 12 днів тому

    This video is poor. First problem: From 0:19 to 1:47 No normal person would think to re-write the numerator like that. I have mentioned polynomial long division as the go-to first step for many integrals of this form in several previous videos. Why doesn't Mr. Calculus Booster show polynomial long division here, so that viewers can become familiar with the more general approach to this kind of question, rather than just magically re-writing the numerator with no explanation of how he thought to do that? The integral that begins to be written at 2:58 would be the form arrived at by polynomial long division. Second problem: At 6:18 he quotes a standard result from an integral table (here, #17 from the edition of Stewart that I have) But as in several previous videos he fails to include the step of checking that the integral, in doing the desired substitution, still matches the standard form. (here, he should do the step of substitution u=x-1/2 and then du=dx)

  • @foxyeipiccolicolpidigenio9099
    @foxyeipiccolicolpidigenio9099 12 днів тому

    noice

  • @Augustus9720
    @Augustus9720 13 днів тому

    dx/x is just dlnx, so the integral is equivalent to the integral of dlnx/lnx which is ln llnx l+C

  • @ernestschoenmakers8181
    @ernestschoenmakers8181 13 днів тому

    A shorter way to solve this integral is when you get to the partial fractions section use the coverup method cause both x's have the same power.

  • @gelbkehlchen
    @gelbkehlchen 13 днів тому

    Solution: ∫1/[x*ln(x)]*dx = ------------------ Substitution: u = ln|x| x = e^u du = 1/x*dx dx = x*du ------------------ = ∫1/(x*u)*x*du = ∫1/u*du = ln|u|+C = ln|ln|x||+C

  • @mathpro926
    @mathpro926 13 днів тому

    solve the limit in factorization it' so good

  • @ernestschoenmakers8181
    @ernestschoenmakers8181 14 днів тому

    I did this integral in a few seconds in my head because i used this trick i found out that x^3 is equal to (x*sqrt(x))^2 and sqrt(x)*dx = (2/3)*d(x*sqrt(x)).

  • @gelbkehlchen
    @gelbkehlchen 14 днів тому

    Solution: lim[(16-x²)/(x²+x-12)] = x➞-4 ----------------- Secondary calculation: x²+x-12 = 0 |p-q-formula ⟹ x1/2 = -1/2±√(1/4+12) = -1/2±√(49/4) = -1/2±7/2 ⟹ x1 = -1/2+7/2 = 3 and x2 = -1/2-7/2 = -4 ⟹ x²+x-12 = (x-x1)*(x-x2) = (x+4)*(x-3) ------------------ = lim{(4-x)*(4+x)/[(x+4)*(x-3)]} x➞-4 = lim[(4-x)/(x-3)] = 8/(-7) = -8/7 x➞-4

  • @ernestschoenmakers8181
    @ernestschoenmakers8181 14 днів тому

    I did it by using partial fraction decompostion and my answer was slightly different from yours but only in the constant which was -(1/5)ln(2) cause i had t+3 in the denominator instead of 2t+6 = 2(t+3).

  • @ernestschoenmakers8181
    @ernestschoenmakers8181 14 днів тому

    If the limit gives you 0 over 0 then one can apply de L'Hôpital's rule which results into -8/7.

    • @alphazero339
      @alphazero339 13 днів тому

      I'm not teacher but I still think students shouldn't be allowed to use this it reduces creativity in problem solving and especially if the student doesn't know rigorous proof of LH which is nearly all cases

    • @ernestschoenmakers8181
      @ernestschoenmakers8181 13 днів тому

      @alphazero339 Yes i think you're right about that, it makes students more creative if they do it your way.

  • @Seb2006-y4x
    @Seb2006-y4x 14 днів тому

    in rational expressions, when taking the limit, if its factorable, factor it and cancel the common factors, and then you use the substitution. Im preparing and getting ready to study Basic Calculus next semester which is next month on february, the 2nd semester.

    • @alphazero339
      @alphazero339 13 днів тому

      Good luck bro MATH FOR WIN. Btw is it possible to have a limit of this kind (rational p(x)/q(x) and after factoring the singularity nicely cancels) without it being possible to be solved by L'Hopital? And do your teachers allow L'Hopital since it solves almost everything

  • @gelbkehlchen
    @gelbkehlchen 15 днів тому

    Solution: lim{[√(x²+7)-4]/(x-3)} = [using the rule of l’Hospital] = x➞3 lim{[1/2*1/√(x²+7)*2x]/1} = x➞3 lim[x/√(x²+7)] = 3/4 x➞3