Lec 23 | MIT 18.01 Single Variable Calculus, Fall 2007

Поділитися
Вставка
  • Опубліковано 4 лют 2025

КОМЕНТАРІ • 63

  • @EverGreyBlue
    @EverGreyBlue 2 роки тому +34

    I also want to point out something that most people would forget: the cameraman is very professional, always got the timing correct. It's really not a trivial work! The cameraman has to listen thoroughout the lecture and keep focusing on the right thing. A big thank you to the camera man as well!

  • @joebrinson5040
    @joebrinson5040 2 роки тому +6

    I have really enjoyed Dr. Jerison's lectures. His sense of humor is wicked.

  • @navaneethakrishnan3644
    @navaneethakrishnan3644 6 років тому +29

    Thank you MIT for making this marvel an open courseware !!!

  • @stavrospod
    @stavrospod 13 років тому +9

    its amazing that he can do the lesson in a fun and creative way with real problems and great humor..awesome lecture again

  • @dataskin
    @dataskin 9 років тому +18

    Great guy, these materials are very informative and provide a great insight

  • @jorgeribes2662
    @jorgeribes2662 4 роки тому +1

    to share this quality of things is incredible

  • @firesean_
    @firesean_ 2 роки тому +4

    Props to Saurav Bastola, ua-cam.com/channels/7hkeE-LRyzietNCecWnHLg.html for the listed topics.
    Lecture 1: Rate of Change
    Lecture 2: Limits
    Lecture 3: Derivatives
    Lecture 4: Chain Rule
    Lecture 5: Implicit Differentiation
    Lecture 6: Exponential and Log
    Lecture 7: Exam 1 Review
    Lecture 9: Linear and Quadratic Approximations
    Lecture 10: Curve Sketching
    Lecture 11: Max-min
    Lecture 12: Related Rates
    Lecture 13: Newton's Method
    Lecture 14: Mean Value Theorem
    Lecture 15: Antiderivative
    Lecture 16: Differential Equations
    Lecture 18: Definite Integrals
    Lecture 19: First Fundamental Theorem
    Lecture 20: Second Fundamental Theorem
    Lecture 21: Applications to Logarithms
    Lecture 22: Volumes
    Lecture 23: Work, Probability
    Lecture 24: Numerical Integration
    Lecture 25: Exam 3 Review
    Lecture 27: Trig Integrals
    Lecture 28: Inverse Substitution
    Lecture 29: Partial Fractions
    Lecture 30: Integration by Parts
    Lecture 31: Parametric Equations
    Lecture 32: Polar Coordinates
    Lecture 33: Exam 4 Review
    Lecture 35: Indeterminate Forms
    Lecture 36: Improper Integrals
    Lecture 37: Infinite Series
    Lecture 38: Taylor's Series
    Lecture 39: Final Review

  • @malexmartinez4007
    @malexmartinez4007 3 роки тому +5

    20:28 When you raise your hand but your professor pretends you are invisible.

  • @kotofu
    @kotofu 14 років тому +8

    5/32 is the probability of x-1/2
    (5/24)/(4/3) are the areas
    Probability is so more interesting that the integration formulas (what I'm doing at school)

    • @asd-wd5bj
      @asd-wd5bj Рік тому +1

      THANK YOU! I tried to calculate it to make sure I was getting everything so far and couldn't figure out what went wrong
      EDIT : Oops, they address it later in the lecture, patience really is a virtue :)

  • @arashjamshidi3249
    @arashjamshidi3249 6 років тому +5

    Great lecture and professor!

  • @malexmartinez4007
    @malexmartinez4007 3 роки тому

    14:24 This clarifies the difference between Examples 2 and 3. Just shows how unintuitive some probability problems can be.

  • @mbadpa
    @mbadpa Рік тому

    Brilliant lecture, as always

  • @GregorOzz
    @GregorOzz 10 років тому +7

    Yeah the result at 41:40 should be 5/32 or 15,6 %.

  • @Liaomiao
    @Liaomiao 14 років тому +6

    'I was the little brother' lol, great lecture as always

  • @carlosalbertocuadros5469
    @carlosalbertocuadros5469 2 роки тому +1

    Good Job Professor

  • @ilyashick3178
    @ilyashick3178 Рік тому

    interesting, testing -1 < x < 1/2 probability is 27/32.
    Sum of probalities for x range -1 < x < 1/2 and 1/2 < x < 1
    27/32 + 5/32 is 1. It is proof of probality range - 1 up to 1.

  • @EDward-u1f6i
    @EDward-u1f6i 4 роки тому +1

    dang he even covers part of continuous distribution what an amazing lecture.

    • @jpnewshazaribagh8130
      @jpnewshazaribagh8130 4 роки тому +2

      Oh there is someone taking the lectures with me. The comments are so old i thought I'm alone. Anyways HI pal.

    • @poorsuk
      @poorsuk 3 роки тому +1

      @@jpnewshazaribagh8130 You're not only the one who is taking lectures in the future :D

  • @Kneecap22
    @Kneecap22 6 років тому +1

    41:42 : "it turns out to be 5/18, we won't do it"..... yeah I think they should have done it XD. I also think it's (5/24)/(4/3), which makes (5/32) as the final answer.

  • @not_amanullah
    @not_amanullah 7 місяців тому

    This is helpful ❤️🤍

  • @not_amanullah
    @not_amanullah 7 місяців тому

    Thanks 🤍❤️

  • @LordNaver
    @LordNaver 7 років тому +1

    Great course!

  • @stsfoxfacel9171
    @stsfoxfacel9171 10 років тому +6

    Shouldn't the small amount of heat required to raise the temperature of water be something like dQ= mcdT, where m=density*volume and c is the specific heat capacity of water?? Why does he just write energy = temp*volume?

    • @kumarrajendran1655
      @kumarrajendran1655 7 років тому +1

      -I was wondering the same thing. Maybe fictional laws of thermodynamics for the sake of understanding calculus?-
      -EDIT: Nvm, I got it. The integral computes the total rise in temperature. And he just measures how much energy it takes to rise the temperature bu that much.-
      EDIT AGAIN: I'm Jon Snow.

    • @luisarroyoalvarez5790
      @luisarroyoalvarez5790 4 роки тому +1

      Because c= 1 cal/g.ºC, for the water.

    • @luisarroyoalvarez5790
      @luisarroyoalvarez5790 4 роки тому +1

      And the density of the water is 1 g/ml.

  • @nanzhongdeng1935
    @nanzhongdeng1935 2 місяці тому

    Still have a question for examples 2 and 3. Are the integral wrt x in ex2 and integral wrt theta in ex3 the area of the semi-sphere? why they are not equal?

  • @AyanHussain05
    @AyanHussain05 3 роки тому

    14:40 but which formula I have to use to find the centre of mass ?

  • @quarstrongforce
    @quarstrongforce 19 днів тому

    T= 100 - 30 y, as y get higher T get lower.

  • @AyanHussain05
    @AyanHussain05 3 роки тому

    8:00 isn't it the integration of the area of semicircle 🤔

  • @randomgirl7000
    @randomgirl7000 3 роки тому +1

    08•48 can anyone express this integration without using geometry

  • @marie_12
    @marie_12 3 роки тому

    thanks a lot

  • @xrisku
    @xrisku 7 років тому +1

    i was the little sister and I got a dart right between the eyes, up about a half inch. probability is 1.

  • @thelastcipher9135
    @thelastcipher9135 8 років тому +6

    the integral on the witch's cauldron example simply gives the total energy inside the cauldron right? loved this lecture!

    • @fgomez209
      @fgomez209 6 років тому +1

      Not the "total energy" because the water already had energy at the beginning. It is the total energy needed to raise the temperature to the requested point.

  • @Marteenez_
    @Marteenez_ 5 років тому

    Why does the method for Ex 3 have dtheta, it makes sense to me when you find the integral wrt dx you multiply the function by dx to form a series of rectangles, but why are we multiplying the height given by sintheta by the angle?

    • @matata2333
      @matata2333 4 роки тому

      sin theta = opp/ hyp , where opp is the height and hyp is r=1. So height = sin theta. And if you need to find the avg of height, you can integral sin theta d theta then multiply by 1/(b-a)

    • @yatisri5354
      @yatisri5354 4 місяці тому

      Why does the comparison between average height with respect to arclength gives lower value than with respect to x one?

  • @ЯрикТроф-с9ы
    @ЯрикТроф-с9ы 9 років тому +13

    Is the answer in the probability task 5/32 ?

  • @monserrategarzon-navarro5722
    @monserrategarzon-navarro5722 4 роки тому

    anyone know how you would calculate the probability of x being greater than or equal to 1/2?

  • @theneonfire
    @theneonfire 13 років тому +5

    At 41:40 it should be 5/32

  • @leonardosoto5669
    @leonardosoto5669 6 років тому

    can someone tell me why did he integrated T and Volume ? what formula used ?

    • @Hobbit183
      @Hobbit183 6 років тому

      He added up temperatures from all hights of the volume BUT then he multiplied each of these temperatures with the infinitesimal volume that has that temperature. So temperatures that a larger volume have counts more

  • @victor1978100
    @victor1978100 Рік тому

    44:48 5/32

  • @imegatrone
    @imegatrone 13 років тому

    I Really Like The Video Work, average value, probability From Your

  • @furrukhjamal00
    @furrukhjamal00 3 роки тому

    I am watching this lectures, I understand them, but when I go to solve the Psets, seems I dont know shit.... anyone having the same issue with the Psets?

  • @ДімаКрасько-с7м
    @ДімаКрасько-с7м 7 років тому

    what is difference between practice exam and exam on this page? ocw.mit.edu/courses/mathematics/18-01-single-variable-calculus-fall-2006/exams/

  • @quarstrongforce
    @quarstrongforce 19 днів тому

    Thermodynamic

  • @safirwang3272
    @safirwang3272 9 років тому

    like it like it like it !!!!!!!!!!!!!!!!

  • @wesleycoleman3781
    @wesleycoleman3781 6 років тому

    The average 0 to 1 value of skin covered by awesome tattoos under David Jerison's lecture shirts is probably 1

  • @albertotrelles5748
    @albertotrelles5748 5 років тому

    I don´t think ppl will respond to this as most of the comments are from years ago, but anyway. I didn´t understand the "conversion factors" when he got 40pi to be 125(1000) kcal.
    I´m studying for economics so it would be nice to learn some more science as well as calculus :)

    • @antistory3771
      @antistory3771 4 роки тому

      He already had 40pi * 1000 kcal and 40pi is approx. 125.664 so approx. 125.......hope that helped

    • @rosadovelascojosuedavid1894
      @rosadovelascojosuedavid1894 4 роки тому

      That's dimentional analysis bro... Maybe if look for that kind of convertion in google you'll find out. But I can tell you it won't be hard to understand

    • @gracemarsmars756
      @gracemarsmars756 4 роки тому

      In the formula Q=density×volume×specific heat×temp difference....he used density as 1g/cm^3, volume in m^3(because he choose height and radius in m), specific heat as 1cal/g degree Celsius, and temp difference as degree Celsius...thus doing calculation we get heat in units of (cal m^3)/cm^3.......((g×m^3×cal×degree Celsius)/g×cm^3×degree Celsius)... That is final answer is 40π cal m^3/cm^3 which equal 40π×10^6 cal and hence 40π×1000 kcal which approximate to 125×1000kcal

  • @ChuckEarnest
    @ChuckEarnest 8 років тому +1

    candy bars lol