Basics of Modular Arithmetic

Поділитися
Вставка
  • Опубліковано 21 гру 2024

КОМЕНТАРІ •

  • @pianoforte17xx48
    @pianoforte17xx48 3 роки тому +20

    OMG just on time! I have been taking this lesson for a month and I can't wrap my head around it. Can't wait to finally understand it!

  • @haricharanbalasundaram3124
    @haricharanbalasundaram3124 3 роки тому +10

    Modular arithmetic is great for finding the last digits of very large exponents... like 7^55, for example. 49 is congruent to -1 (mod 10), 7^4 is congruent to -1^2 = 1 (mod 10) . 55 is basically 13*4 + 3, so the last digit is the last digit of 7^3, which is 3.

  • @diogenissiganos5036
    @diogenissiganos5036 3 роки тому +24

    Modular arithmetic; one of the most important aspects of mathematics

    • @aashsyed1277
      @aashsyed1277 3 роки тому +1

      IT COMES IN ABSTRACT ALGEBRA WHICH COMES IN PHYSICS, CHEMISTRY AND SO ON

    • @SyberMath
      @SyberMath  3 роки тому +5

      That's right!

    • @aashsyed1277
      @aashsyed1277 3 роки тому

      @@SyberMath ARE YOU REPLYING TO ME?

    • @aahaanchawla5393
      @aahaanchawla5393 3 роки тому +1

      @@aashsyed1277 hey watch your caps

    • @leif1075
      @leif1075 3 роки тому

      @@SyberMath At 6:39 it doesnt just jave 2 solutions in mod 7 but an infinte mumber because as you said you can add any multiple of 7 so 12 for e.g. is another solution since 12 squared plus 3 equals 147 which is a multiple of 7.

  • @jakubwieliczko257
    @jakubwieliczko257 3 роки тому +6

    Awesome video! I am preparing for the olympiad so it was fun to see another perspective on modular arithmetic. Great explanation. Greetings from Poland! ❤💕💖

    • @SyberMath
      @SyberMath  3 роки тому

      Glad it was helpful! 💖

  • @LOL-gn7kv
    @LOL-gn7kv 3 роки тому +16

    Modular makes everything so easy!
    Even if you don't know too much of it , it still useful like a congruent to b modulo n can be written as a = kn + b for some integer k and it just becomes a linear equation thereafter. Also syber make this a series ;)

  • @aleksszukovskis2074
    @aleksszukovskis2074 3 роки тому +4

    Yes! finally! I was searching for these!

  • @mathsandsciencechannel
    @mathsandsciencechannel 3 роки тому +13

    I love this guy,always consistent,good explanation and good videos. Almost getting to 10k subscribers and he deserves it. Will get there someday bro.😍

    • @SyberMath
      @SyberMath  3 роки тому +2

      I appreciate that! 💖

  • @242math
    @242math 3 роки тому +2

    you are a great teacher bro, thanks for taking us through the basics of a topic that is so confusing to many students, great job, excellent tutorial

    • @SyberMath
      @SyberMath  3 роки тому +1

      I appreciate that! 💖

  • @manojsurya1005
    @manojsurya1005 3 роки тому +3

    This video reminds me of all the theorems and basics that I learned for modulo like fermat,Euler totient function,Wilson theorem,Chinese remainder theorem(for solving 3 congruent modulo).great video,u can make a video on each theorem briefly if u can

    • @haricharanbalasundaram3124
      @haricharanbalasundaram3124 3 роки тому

      I think those would be unlike the videos in this channel, since I think videos are made to help in problem solving, not for teaching itself. There are some MIT OCW lectures on it though, they are great

  • @repsarklar9420
    @repsarklar9420 3 роки тому +10

    *SYBERMATH LOVERS ...*
    👇

    • @SyberMath
      @SyberMath  3 роки тому +3

      Thank you! 💖

    • @shreyan1362
      @shreyan1362 3 роки тому +1

      @@SyberMath i thought you were bringing quadratic congruence as well :|

    • @aashsyed1277
      @aashsyed1277 3 роки тому +1

      @@SyberMath yes!

    • @aashsyed1277
      @aashsyed1277 3 роки тому +1

      @@SyberMath i love you!

    • @akolangto8225
      @akolangto8225 3 роки тому

      Syber Math fan here from the Philippines

  • @shreyan1362
    @shreyan1362 3 роки тому +3

    @Sybermath please continue this series.... this is really helpful 😊🤩

  • @RealEverythingComputers
    @RealEverythingComputers 3 місяці тому

    Thanks for the great explanation - great for an abstract algebra course

  • @SimchaWaldman
    @SimchaWaldman 3 роки тому

    One of my favorite topics. And its symbols... feast for my eyes!

  • @kubabartmanski7254
    @kubabartmanski7254 Рік тому

    Very neat and elegant introduction to the topic!

  • @sergeigrigorev2180
    @sergeigrigorev2180 3 роки тому

    Really like this topic! I hope you will continue the Modular Arithmetics series

  • @deratu5517
    @deratu5517 3 роки тому

    Wow, I really do like this video! Hopefully there are many more topics that can be explained like this. Have a nice day

  • @wannabeactuary01
    @wannabeactuary01 2 місяці тому

    good video - great revision

  • @sekarganesan902
    @sekarganesan902 3 роки тому +1

    Good introduction to modulo.

  • @aayushve426
    @aayushve426 8 місяців тому

    great video man ! keep up the work !

  • @Neemakukreti5421
    @Neemakukreti5421 Рік тому +2

    couldnt understand the first example (x^2 +3_=0(mod7)after the whole adding 7 to both sides thing. To be specific, you equaled 7 to 0,which has been defined as 7's remainder and which is not the number itself... So how can one just add ita remainder to one side, and the dividend to the other..? A reply would be much appreciated

    • @SyberMath
      @SyberMath  Рік тому

      Adding 7 and 0 are equivalent because 7 is congruent to 0 mod 7. You can also think of it this way: all numbers in the form 7k where k is an integer are congruent mod 7. 7 and 0 are in the same group in that sense. All integers can be grouped into 7 groups mod 7 like 7k 7k+1 7k+2 7k+3 7k+4 7k+5 and 7k+6. Any integer can be represented in one of these forms. I hope this helps.

    • @SyberMath
      @SyberMath  Рік тому

      -3 and 4 are congruent mod 7 because they can both be written as 7k+4. Basically they are in the same group (referring to groups I mentioned in my previous reply)

    • @srividhyamoorthy761
      @srividhyamoorthy761 Рік тому

      @SyberMath can k be 0

    • @srividhyamoorthy761
      @srividhyamoorthy761 Рік тому

      ​@@SyberMathcan k be 0

    • @srividhyamoorthy761
      @srividhyamoorthy761 Рік тому

      After repeatedly watching this i am able to understand so basically if u see for eg 28 is a multiple of 7 so remainder is 0 it can be written as 28 congruent to 0 (mod7 )now if you're to add 7 to 28 it becomes 35 since we're not even into the quotient when we write in modular form 35 also is congruent to mod7 you see so the remainder is 0 so if you are to add add 7 to rhs it still should give the same remainder of -3 that's it .

  • @coefficient1359
    @coefficient1359 3 роки тому +1

    Great, bring more.

  • @mainaccount0411
    @mainaccount0411 Рік тому

    Sir, how do you make your videos, what software do you use to write on?

    • @SyberMath
      @SyberMath  Рік тому

      Microphone: Blue Yeti USB Microphone
      Device: iPad and apple pencil
      Apps and Web Tools: Notability, Google Docs, Canva, Desmos

  • @clovissimard3099
    @clovissimard3099 6 місяців тому

    TEMPS-HASARD MODULO 3
    Pour en revenir au sujet qui nous occupe, dans le monde subatomique, il se pourrait que les phénomènes ne suivent pas une ligne de temps unique, ce qui est conforme à la théorie de la gravité quantique et de la « non-existence » temporelle.

  • @tonyhaddad1394
    @tonyhaddad1394 3 роки тому +1

    Broo i like modular so much beacaus we can tested in real life and make life easier !!! ofcorse now we computers but it so intersting when we challenge our brain 😍😍

  • @MangoLassiYT
    @MangoLassiYT 11 місяців тому

    at 8:38 why are we squaring residues of 4 to check if sol exists or not. I did it using even no as : 2k and Odd no as :2k+1 taking modulo of these two I concluded solution doesn't exists but i don't understand how did you do it usig residues of 4

    • @SyberMath
      @SyberMath  11 місяців тому

      To find out which number squared leaves a remainder of 2 upon division by 4, we need to check the remainders for all possible numbers which are represented by 4 numbers: 0,1,2,3. Any number greater than these fall into one of these categories by the remainder they leave upon division by 4.

    • @MangoLassiYT
      @MangoLassiYT 11 місяців тому

      oh so we are taking mod first of num and then squaring the remainder and again taking mod ? @@SyberMath

  • @Qermaq
    @Qermaq 3 роки тому

    2:42 would 2 and 3 be valid answers? I agree that 11 is congruent to 5 mod 6, but mod 2 would be 1, and mod 3 would be 2, properly. I suppose one can say that 11 is congruent to 5 mod 3 in the same way you can say it's -1 mod 3, as basically in mod n we can add or subtract kn where k is an integer. Is that the right direction?

    • @SyberMath
      @SyberMath  3 роки тому +1

      Yes. 11≡1 (mod 2) and 5≡1 (mod 2) so they are congruent
      Similarly, 11≡2 (mod 3) and 5≡2 (mod 3) so they are congruent

  • @ARS-fi5dp
    @ARS-fi5dp 10 днів тому

    Thank you alot

  • @rafiihsanalfathin9479
    @rafiihsanalfathin9479 3 роки тому

    Can you do video like this a basic olympiad theorem and how to use it, but also longer and deep?, it would help me a lot!

    • @SyberMath
      @SyberMath  3 роки тому

      Will try in the future

  • @SamBHodge
    @SamBHodge 2 місяці тому

    Please let me learn more about this topic

  • @MathElite
    @MathElite 3 роки тому +1

    First, sooo close to 10k subscribers!
    Great video

  • @SamBHodge
    @SamBHodge 2 місяці тому

    Thanks

  • @manavaggarwal2714
    @manavaggarwal2714 3 роки тому

    Are you coming up with a course on number theory or is it just a randomly posted topic🤔.

    • @SyberMath
      @SyberMath  3 роки тому

      After the mod equation video, there's been some requests. No plan on making a course

  • @aashsyed1277
    @aashsyed1277 3 роки тому +1

    DAMN YOU ARE SO AWESOME....

  • @adityadarade4533
    @adityadarade4533 2 роки тому

    Love you bro thanks

  • @sakkiediereaper
    @sakkiediereaper Рік тому +1

    😂 the title should be, Modular Arithmetic: The cheat code to Mathematics!

  • @zainlam9965
    @zainlam9965 Рік тому

    another small thing is wilson's theorem

  • @srijanbhowmick9570
    @srijanbhowmick9570 3 роки тому

    Hey SyberMath , how you doing ?

    • @SyberMath
      @SyberMath  3 роки тому

      Pretty good! How are you? Long time no see! 😁

    • @srijanbhowmick9570
      @srijanbhowmick9570 3 роки тому

      @@SyberMath Yeah exams and all that stuff
      Finally I am free and can comment as much as I want
      Thank you once again for keeping me entertained with your math problems during these tough times

  • @aashsyed1277
    @aashsyed1277 3 роки тому

    9.8 K SUBS LIKE REALLY!

  • @aashsyed1277
    @aashsyed1277 3 роки тому +2

    DAMN YOU ARE SO AWESOME......

  • @tushargupta986
    @tushargupta986 Рік тому +1

    from India

  • @tonyhaddad1394
    @tonyhaddad1394 3 роки тому

    We have *

  • @sukienve8144
    @sukienve8144 4 місяці тому

    im cooked

  • @Barikisu-f9p
    @Barikisu-f9p 2 місяці тому

    I don't understand it

  • @zstar8397
    @zstar8397 Рік тому

    Hey hope you are doing alright just I wanna say that
    GOD loved the world so much he sent his only begotten
    son Jesus to die a brutal death for us so that we can have eternal life and we can all accept this amazing gift this by simply trusting in Jesus, confessing that GOD raised him from the dead, turning away from your sins and forming a relationship with GOD...

  • @DzulMuqfiz
    @DzulMuqfiz 3 місяці тому

    wey palotak dia payah sangat ni