Convolution Theorem and ℒ {Integral} Explanation

Поділитися
Вставка
  • Опубліковано 26 гру 2024

КОМЕНТАРІ • 15

  • @ricaulcastellon9615
    @ricaulcastellon9615 4 роки тому +2

    Man, you made it look so easy. It can not be explained any better and clearer than that. You the man!!!

  • @spintwohalves
    @spintwohalves 5 років тому +5

    Nice derivation. I like when the result of a problem ends up much nicer than expected. Now I’m curious about convolutions and how they are used in different areas.

    • @MuPrimeMath
      @MuPrimeMath  5 років тому +2

      Check this out: en.m.wikipedia.org/wiki/Convolutional_neural_network

    • @spintwohalves
      @spintwohalves 5 років тому

      Mu Prime Math Awesome! Thanks!

    • @afseraph
      @afseraph 5 років тому +3

      Convolutions are often used in control theory and various forms of signal processing. Convolutions (loosely speaking) describe how a signal changes when it gets through a system or a filter.

  • @afseraph
    @afseraph 5 років тому +3

    "The reason this is important is not because we do convolutions all the time"
    > control engineering cries in corner

  • @user-wu8yq1rb9t
    @user-wu8yq1rb9t 2 роки тому

    Great ... Your explanation is just awesome.
    I wish you will be more active.
    Thank you so much 💖

  • @JoelRTLCosta
    @JoelRTLCosta 2 роки тому

    Thanks for the videos!

  • @benjaminbrady2385
    @benjaminbrady2385 5 років тому

    Why can the bounds of the integral sometimes be from [0, infinity] or [-infinity, infinity]?

    • @MuPrimeMath
      @MuPrimeMath  5 років тому +3

      The integral from -infinity to infinity is called the bilateral Laplace transform. It has different properties than the standard (unilateral) Laplace transform, and it also converges less often. I have just been working with the unilateral transform!

  • @vladislavsharshukov2202
    @vladislavsharshukov2202 5 років тому

    Hey, thank you for your videos, it helps me a lot with my exams! Also, greetings from Russia : )

  • @ayoubachak01
    @ayoubachak01 5 років тому +1

    OKEY that seems very useful

  • @monuvipvlog7605
    @monuvipvlog7605 4 роки тому +1

    Bhai Ingaland se padhe ho ka

  • @user-wu8yq1rb9t
    @user-wu8yq1rb9t 2 роки тому

    I like even your whiteboard! Because it seems, your whiteboard is continuing to infinity! Just like Math. Therefore you have infinite space for infinite Math! ... I like that! .... Therefore ... Please be more active!