DINOv2 Explained: Visual Model Insights & Comprehensive Code Guide

Поділитися
Вставка
  • Опубліковано 17 гру 2024

КОМЕНТАРІ • 21

  • @adityapillai3091
    @adityapillai3091 3 місяці тому +1

    Really good explanation. Would love to see you make more videos. You're very clear and the visual content you present is easily digestible

    • @aiape6954
      @aiape6954  3 місяці тому

      Thank you! Started at a start-up and it has eaten my time lol

    • @adityapillai3091
      @adityapillai3091 3 місяці тому

      @@aiape6954 Start up grind ain’t no joke fr

  • @Erosis
    @Erosis Рік тому +4

    Awesome explanation!

  • @arseniypolyubin7076
    @arseniypolyubin7076 Рік тому +1

    Thanks a lot for this video!

  • @leeyuguang4424
    @leeyuguang4424 Рік тому +4

    How is it different than DINO itself? I wish there's more explanation.

  • @pratyushk2693
    @pratyushk2693 6 місяців тому

    Really easy to understand! Thanks!

  • @零鱼芃
    @零鱼芃 11 місяців тому +2

    Amazing work! I really want to know how to decide the cropping parameters based on different datasets. Is it completely based on experience?

    • @aiape6954
      @aiape6954  11 місяців тому +2

      The research does not explain any optimization strategies of tuning these parameters, so you have to assume it’s some mixture of intuition and trial and error. I would be interested in applying some evolutionary algorithm to find the best parameter set and see if you can push DINO performance.

  • @elahe4737
    @elahe4737 Рік тому +1

    Thank you so much. It was clear and interesting. I have a question please, is it possible to modify the attention maps in this model?

    • @aiape6954
      @aiape6954  Рік тому

      Checkout this repo! I use it all the time.
      github.com/ShirAmir/dino-vit-features/tree/main

  • @DevelopmentTeam-b8x
    @DevelopmentTeam-b8x Рік тому +1

    well Explained!!

  • @VLM234
    @VLM234 10 місяців тому

    that's a great explanation. Are you planning to make a video on the Florence-2 model? I would love to see for livestock use case.

  • @Kofi-qu9zc
    @Kofi-qu9zc 6 місяців тому

    Hi, great video. Had a tangent question, I am trying to use the base pretrained model of DINOV2 from huggingface on the broad institutes BBBC021 dataset of MCF7 breast cancer cells and I'm finding that the CLS embeddings when clustered don't align with the labels (MoA's) in the dataset... Given your experience with DINO, do you think this is due to the cropping strategy used in the pretrained model, and I would have to retrain a bare-bones DINOv2 model on millions of microscopy images to achieve the task of classification correctly?
    Thanks for any help!

  • @mortezasjah6168
    @mortezasjah6168 6 місяців тому

    Thank you for wrapping up the code and explanation, does your code support multi node implementation? and is there any difference between your notebook and DinoV2 code?

  • @vizlifestudios
    @vizlifestudios 3 місяці тому

    thank you!

  • @WildWonders7-u9z
    @WildWonders7-u9z 9 місяців тому

    Hello i have a paid project on DINO IBOT and DINOV2 will you help?

  • @rickli3746
    @rickli3746 10 місяців тому

    I wonder if you think DINOv2 could be applied to CNNs?

    • @aiape6954
      @aiape6954  10 місяців тому +1

      My intuition is that it would work but not as well as the transformers. Transformers are slow and computationally expensive but they hold information in a way that CNNs cannot. Probably better off distilling down to a CNN from a transformer.

  • @aesaerthherbo3783
    @aesaerthherbo3783 Рік тому +4

    Amazing explanation, but I think you are just explaining DINO instead of DINOv2.

    • @aiape6954
      @aiape6954  Рік тому +1

      Everything in this video applies to both. The process was optimized for DINOv2 but the structure remained the same.