Translation and Inverse Laplace Transforms

Поділитися
Вставка
  • Опубліковано 15 гру 2024

КОМЕНТАРІ • 54

  • @juhisaxena3594
    @juhisaxena3594 9 місяців тому +17

    The entire series on Laplace transform is just exceptional

  • @mili3212
    @mili3212 4 роки тому +22

    Thank you so much for a clear and precise video!! I’m so lucky to have just discovered your channel and I hope you gain a lot more recognition soon!!

  • @orueom7720
    @orueom7720 3 роки тому +9

    Thanks so much for this really explanatory video! I'm learning the theory behind the Laplace transforms so that I can use it modelling situations on SIMULINK. As an ChemEng student this is a life saver as it really clears things up!

    • @DrTrefor
      @DrTrefor  3 роки тому +1

      Glad it was helpful!

  • @PrachiVerma-h2n
    @PrachiVerma-h2n 5 місяців тому +3

    thank you very much for the clear explanation. you are the best teacher I have ever seen 💜💜

  • @ricardobautista-garcia8492
    @ricardobautista-garcia8492 3 роки тому +3

    Thank you very much for your videos. I recall watching your integration ones 1 year ago when the Pandemic began and in the middle of everything I needed to submit an assignment.

    • @ricardobautista-garcia8492
      @ricardobautista-garcia8492 3 роки тому +1

      This is where I discovered your channel for the first time.

    • @DrTrefor
      @DrTrefor  3 роки тому +1

      Glad they’ve been helping over this last year!

  • @caosspearbr7268
    @caosspearbr7268 2 роки тому +1

    You're a life saver!! Thanks from Brazil!

  • @scottboyer7774
    @scottboyer7774 3 роки тому +6

    So far I have a 100 in differential equations because of these videos :D

  • @mileslegend
    @mileslegend 2 роки тому +2

    Thank you 😊😊 because of your explanation was able to win a quick solve contest and I got a prize 🏆 😊🥰🔥🔥in Laplace transforms

  • @Yuen891
    @Yuen891 Рік тому

    Thank you so much.If teaching with laplace transform table simultaneously is way better . I love your video

  • @ClvrFarmer
    @ClvrFarmer 18 днів тому +1

    saved my ass. 24 hrs for the HW deadline. i have zero clue what laplase is and what is it for. 3 hrs of concentration and finished the HW in 2 hrs. amazing

  • @ricardoraymond9037
    @ricardoraymond9037 3 роки тому +1

    I am enjoying these tutorials👍

  • @asahbernard429
    @asahbernard429 7 місяців тому +1

    i have a question. why di he put (s-1)+1 in the numerator at minute 8:53?

    • @hanminoru_
      @hanminoru_ Місяць тому

      integral definition formula

  • @wunboonail
    @wunboonail 4 роки тому +1

    well done. You have planned this presentation so well.

    • @DrTrefor
      @DrTrefor  4 роки тому

      Thank you very much!

  • @yazmrt
    @yazmrt 3 роки тому +1

    Thanks for the video and explanations

  • @chuxiaoguo6721
    @chuxiaoguo6721 2 роки тому +1

    What a legend, thank you!

  • @the_eternal_student
    @the_eternal_student 4 місяці тому +1

    You just threw the idea of t^2 becoming a cube in the denominator without deriving it, so I had no idea what you were talking about.
    I wish you had said more about how the shift applies when you have two functions being multiplied together as in e^t sin(kt).

    • @carultch
      @carultch 2 місяці тому

      Here's how you derive those two standard Laplace transforms.
      For polynomial functions t^n in general:
      L{t^n} = integral t^n * e^(-s*t) dt, from 0 to inf
      Construct integration by parts table, with t^n differentiated, and e^(-s*t) integrated. Title the columns k for the row number, S for signs, D for differentiate, and I for integrate. Construct several rows until you see the pattern. Then construct the kth row, the nth row, and the (n+1)th row (which will be the final row once we differentiate to zero).
      k _ _ S _ _ _ _ _ _ _ D _ _ _ _ _ _ _ _ _ _ _ _ _I
      0 _ _ + _ _ _ _ _ _ _ t^n _ _ _ _ _ _ _ _ _ _ _ e^(-s*t)
      1 _ _ - _ _ _ _ _ _ _ n*t^(n - 1) _ _ _ _ _ _ _ _-1/s*e^(-s*t)
      2 _ _ + _ _ _ _ _ _ _ n*(n-1)*t^(n-2) _ _ _ _ _ +1/s^2*e^(-s*t)
      k _ _ _(-1)^k _ _ _ _ n!/(n - k)! * t^(n - k) _ _ (-1)^k/s^k*e^(-s*t)
      n _ _ _(-1)^n _ _ _ _ n! _ _ _ _ _ _ _ _ _ _ _ _ _ (-1)^n/s^n*e^(-s*t)
      n+1 _ _(-1)^(n+1) _ 0 _ _ _ _ _ _ _ _ _ _ _ _ _ (-1)^(n+1)/s^(n+1)*e^(-s*t)
      All terms at infinity evaluate at zero, due to e^(-s*t). All terms containing any t^(nonzero power) will evaluate to zero at t=0. Thus, the only row that governs the definite integral, is the nth row. Connect the signs with the D-column, and then to the I-column from the next row down.
      n!*(-1)^n * (-1)^(n + 1) * 1/s^(n + 1) * e^(-s*t)
      The two alternators multiply to -1:
      -n!/s^(n + 1) * e^(-s*t)
      Evaluate at t=inf, evaluate at t=0, and subtract:
      -n!/s^(n + 1) * [e^(-s*inf) - e^(0)]
      -n!/s^(n + 1) * [0 - 1]
      Result:
      L{t^n} = n!/s^(n + 1)
      Plug in n = 2:
      L{t^2} = 2!/s^3

    • @carultch
      @carultch 2 місяці тому

      For deriving L{sin(k*t)}:
      L{sin(k*t)} = integral sin(k*t)*e^(-s*t) dt
      Construct IBP table with sin(k*t) in the D-column, and e^(-s*t) in the I-column:
      S _ _ _ D _ _ _ _ _ _ I
      + _ _ sin(k*t) _ _ _ e^(-s*t)
      - _ _ k*cos(k*t) _ _ -1/s*e^(-s*t)
      + _ _ -k^2*sin(k*t) _ _ 1/s^2*e^(-s*t)
      Observe that we have a constant multiple of the original integral across the bottom row. Call it I, and construct the result:
      I = -1/s*sin(k*t)*e^(-s*t) - k/s^2*cos(k*t)*e^(-s*t) - k^2/s^2 * I
      Shuffle I-terms to the left:
      I*(1 + k^2/s^2) = -1/s*sin(k*t)*e^(-s*t) - k/s^2*cos(k*t)*e^(-s*t)
      Multiply thru by s^2 to clear fractions:
      I*(s^2 + k^2) = -s*sin(k*t)*e^(-s*t) - k*cos(k*t)*e^(-s*t)
      Isolate I:
      I = 1/(s^2 + k^2) * [-k*cos(k*t) - s*sin(k*t)]*e^(-s*t)
      Evaluate at t=inf, and t=0, and subtract:
      At t=inf, entire integral goes to zero
      At t=0, sin(k*t) is zero, and cos(k*t) = 1. Lower bound evaluates to -k/(s^2 + k)
      Thus, when subtracting from upper bound evaluation of zero, we get:
      L{sin(k*t)} = k/(s^2 + k)

    • @ritvikkiragi8110
      @ritvikkiragi8110 Місяць тому

      You must watch the videos earlier in series

  • @tonywang7933
    @tonywang7933 3 місяці тому

    Thank you so much exactly what I needed!!

  • @VndNvwYvvSvv
    @VndNvwYvvSvv 3 роки тому +1

    At 12:00, this is division by 2 not by ½, or multiplication by ½

  • @user-wu8yq1rb9t
    @user-wu8yq1rb9t 2 роки тому +1

    Thank you so much ❤️💗

  • @ManojKumar-cj7oj
    @ManojKumar-cj7oj 3 роки тому +3

    at 11:35 I think you forget to include translation part e^t in second inverse transform
    isn't it
    Im sorry I didn't see that caption ,sorry again :)

  • @angwe-asencollins3987
    @angwe-asencollins3987 2 місяці тому

    Laplace lecture is good

  • @yoyochan8615
    @yoyochan8615 3 роки тому +1

    You explained very well, it was very clear and easy to understand, I understand how inverse Lapplace Transform works. But are we going to be asked to show the detailed steps of the process of inverse Laplace Transform? Because you didn't show them in the video, and doing the normal Laplace Transform can show the steps of the integration

    • @DrTrefor
      @DrTrefor  3 роки тому +1

      It’s a bit like the relationship between differentiation and anti derivatives. If you already know the one and have put the work in to get it, you get the other “for free”.

    • @yoyochan8615
      @yoyochan8615 3 роки тому

      @@DrTrefor so you are saying normal laplace transform and the inverse often show up the same time? And you mean inverse transform requires less detailed steps? Or doesn't require detsiled steps at all?

    • @carultch
      @carultch Рік тому

      @@yoyochan8615 To do Laplace transforms from the t-domain to the s-domain, you can either use the integral definition as the first principals to derive it, or you can use a library of standard Laplace transforms to construct it (which is a much easier method, most of the time).
      To do inverse Laplace transforms, to get back to the t-domain from the s-domain, you need to manipulate the given expression with algebra and with properties of the Laplace transform to resemble Laplace transforms from the library of standard transforms. There is an integral that can invert a Laplace transform, but it is complicated, and it is a lot easier to use algebra to manipulate the terms to match the standard transforms in the library of transforms.

  • @dread2much
    @dread2much Рік тому

    Damn these videos are a godsend. My professor sucks... at least the one I have in person ;)

  • @terramyr2074
    @terramyr2074 3 роки тому

    this might be a stupid question but why do we add a e^t in front of both cos(2t) and 1/2 sin(2t)

    • @VndNvwYvvSvv
      @VndNvwYvvSvv 3 роки тому +1

      That is the translation in s, from s -> (s-1) where we add e^(at) for (s-a).

  • @gatesfather007
    @gatesfather007 3 роки тому

    Hi, Trevor, what tablet do you use to write and share the screen with?

  • @benetsonichulangula7361
    @benetsonichulangula7361 2 роки тому

    The final answer i thought it could have e^t as a coefficient of cos 2t +(1/2)sin 2t...i need help on this🙏🏾

    • @xxxSoulreaperxxx99
      @xxxSoulreaperxxx99 2 роки тому

      you are correct, note that at the end of the video OP left a note stating that the sin term also needs e^t as a coefficient.

  • @josephhajj1570
    @josephhajj1570 4 роки тому +1

    Nice one professor plz can you solve laplace-1(ln(1+s))

    • @carultch
      @carultch Рік тому

      Given:
      L^-1{ln(1 + s)}
      Use the s-derivative property of the Laplace Transform, where given F(s) = L{f(t)}:
      -d/ds L{F(s)} = t*f(t)
      Let G(s) = ln(1 + s), and g(t) be the solution. This means:
      -d/ds ln(1 + s) = t*g(t)
      Carry out derivative:
      d/ds ln(1 + s) = 1/(s + 1)
      Thus:
      L{t*g(t)} = -1/(s + 1)
      Invert:
      L^-1{-1/(s + 1)} = -e^(-t) = t*g(t)
      Solve for g(t), and we have our solution:
      g(t) = -1/t * e^(-t)

  • @alyashour5861
    @alyashour5861 Рік тому +1

    The GOAT

  • @continnum_radhe-radhe
    @continnum_radhe-radhe 2 роки тому +1

    🔥🔥🔥

  • @MrPatrickbuit
    @MrPatrickbuit 7 місяців тому

    This is insane

  • @ninasmith-pd8fv
    @ninasmith-pd8fv Місяць тому +3

    none of your ks look like ks

  • @Knottieyarn
    @Knottieyarn Рік тому +1

    Laplace makes me sleepy 😢

  • @eatemadfanaee5954
    @eatemadfanaee5954 2 роки тому +1

    brilliant explanation + awful handwriting

  • @aayushpatel8913
    @aayushpatel8913 3 роки тому

    Why just basic things are covered?
    More complex Problems expected

    • @VndNvwYvvSvv
      @VndNvwYvvSvv 3 роки тому +2

      It's an adequate explanation of the theorem. If you want more problems, search for that