Momentum and Angular Momentum of the Universe

Поділитися
Вставка
  • Опубліковано 26 вер 2024
  • Visualization of the conservation of the momentum and angular momentum of everything in the universe.

КОМЕНТАРІ • 406

  • @EugeneKhutoryansky
    @EugeneKhutoryansky  5 років тому +18

    To see subtitles in other languages: Click on the gear symbol under the video, then click on "subtitles." Then select the language (You may need to scroll up and down to see all the languages available).
    --To change subtitle appearance: Scroll to the top of the language selection window and click "options." In the options window you can, for example, choose a different font color and background color, and set the "background opacity" to 100% to help make the subtitles more readable.
    --To turn the subtitles "on" or "off" altogether: Click the "CC" button under the video.
    --If you believe that the translation in the subtitles can be improved, please send me an email.

    • @TURNON111
      @TURNON111 3 роки тому

      My wish is to be with scientists and give you new theories and I have some theories plz 🙏🙏 help me to give my theories to world love from Pakistan.

    • @bahar2425
      @bahar2425 2 роки тому

      Türkçe diline nasıl çevireceğiz.

    • @murugan5280
      @murugan5280 2 роки тому

      @@TURNON111write a Article and send to a good journal for publication..

    • @TURNON111
      @TURNON111 2 роки тому

      @@murugan5280 already done it but no one even published worldwide

    • @Boooommerang
      @Boooommerang 2 роки тому

      Dear Eugene! Wowww! That's beautiful and perfect job! Congratulations

  • @EugeneKhutoryansky
    @EugeneKhutoryansky  9 років тому +24

    I recently created a Patreon account for people who want to help support my channel. The link is on my UA-cam home page. Also, in case, you have not already seen them, I uploaded several other videos recently. As always, for each video that you like, you can help more people find it in their UA-cam search engine by clicking the like button, and writing a comment. Lots more videos are coming very soon. Thanks.

    • @IDontReadReplies42069
      @IDontReadReplies42069 9 років тому +8

      +Eugene Khutoryansky You're the best, hands down best youtube subscription. Don't stop making videos!

    • @trevonildo
      @trevonildo 9 років тому +1

      you shold put the link to the patreon in the description of the videos.
      awesome video!

    • @rayantahir
      @rayantahir 8 років тому

      +Physics Videos by Eugene Khutoryansky I m watching your video 9th class and now I m 1st year(11th class) and still watching................. Your physics videos, animations and explanation are the best...............

    • @keselekes
      @keselekes 8 років тому +2

      You and Salman Khan ( from KhanAcademy) rule when its about illustrative and clear e-learning.

    • @meeharbin4205
      @meeharbin4205 7 років тому

      Physics Videos by Eugene Khutoryansky
      You're one of the best teachers I've had in physics, but somethings been boggling my mind for a while and this video is a perfect opportunity to ask. Could you please explain how the smaller object when colliding with the bigger one(2.25) does not stop. I know in real life it would bounce off but according to Newton's laws of motion it shouldn't.
      According to Newton's third law, there should be an equal and opposite reactionary force on the smaller ball when it applies a force on the bigger ball and since force is equal to the change of momentum, when the bigger ball applies the equal and opposite force, the smaller ball should stop as the force it exerts is equal to it's momentum. This doesn't happen in real life.
      Something that may help you that I've thought of, is from a different example. Consider the smaller ball now stationary, and the bigger ball is moving toward it at a constant velocity. Same situation but the roles switched. When the bigger ball hits the smaller ball, I used to think the bigger ball should stop as the smaller ball produces an equal and opposite force to stop it. But then I realised that the bigger ball does not have to exert its full momentum onto the smaller ball, but only enough so that the move at a similar speed. So the momentum of the larger ball only decreases by a smaller amount as it takes less force to get the smaller ball moving at the same speed. That's my reasoning, unfortunately it does not explain what I mentioned earlier. My reasoning lead me to think that the smaller ball has to exert a larger force than its momentum can give to the larger ball, but it then gets cancelled out when the larger ball exerting the same amount of extra force to the smaller ball making it move in the opposite direction.
      However the reasoning mentioned in the last paragraph alludes to there being a conservation of velocity which definitely sounds untrue. I hope you read and understand my long winded messy post and give some kind of solution based on what you can understand of what I am saying, I hope I'm not wasting your time, sorry :)

  • @zhenwu5778
    @zhenwu5778 4 роки тому +52

    Beethoven - Moonlight Sonata (1st Movement)❤️. Let's go!!

    • @markloveless1001
      @markloveless1001 4 роки тому +4

      Not to mention 'On The Beautiful Blue Danube', which always transports me to a Pan-Am space shuttle docking with the space station...

  • @JARSCAR
    @JARSCAR 8 років тому +17

    VERY well presented. Being a young adult yearning off the knowledge of theoretical physics, I found this video to be sufficient and explanatory. Great work, Eugene!

  • @hadijaffri9856
    @hadijaffri9856 2 роки тому +3

    the best explanation on angular momentum on youtube,period

  • @EugeneKhutoryansky
    @EugeneKhutoryansky  5 років тому +12

    You can help translate this video by adding subtitles in other languages. To add a translation, click on the following link:
    ua-cam.com/users/timedtext_video?v=PNHSIEO-KOQ&ref=share
    You will then be able to add translations for all the subtitles. You will also be able to provide a translation for the title of the video. Please remember to hit the submit button for both the title and for the subtitles, as they are submitted separately.
    Details about adding translations is available at
    support.google.com/youtube/answer/6054623?hl=en
    Thanks.

    • @big_cuh
      @big_cuh 5 років тому

      Your video is older than the Bugatti Chiron. Wow

  • @alepel792
    @alepel792 9 років тому +12

    Literally learning this right now in my physics course. Thank you!

  • @karanagarwal3628
    @karanagarwal3628 9 років тому +48

    you deserve much more views I think it's bcz of you long channel name -a simple advice from a regular viewer thanks a lot

    • @mr.rathore7051
      @mr.rathore7051 6 років тому

      Karan Agarwal absolutely

    • @cssstylescommand4
      @cssstylescommand4 4 роки тому

      It’s his name.

    • @ThomasBomb45
      @ThomasBomb45 3 роки тому +1

      @@cssstylescommand4 "Physics Videos by [Name]" could be shortened to just this name

    • @samuraijosh1595
      @samuraijosh1595 3 роки тому +1

      @@ThomasBomb45I think a bit longer but self-explanatory channel name would be "[Name]'s Physics".

  • @Virusnzz
    @Virusnzz 9 років тому +50

    So are you a physics professor or something? How do you know all this stuff and how do you manage to describe it all in such an intuitive manner?

    • @darkdevil905
      @darkdevil905 9 років тому +15

      +Virusnzz He's an Electrical Engineer!

    • @biggbuck9535
      @biggbuck9535 5 років тому +12

      @ Not necessarily true. I've earned a degree in Physics but getting a Doctorates in Electrical engineering. In other words, there is a physics background even if it's scope is just courses in physics. Electrical engineers are required to take physics as part of their program.

    • @Spacetime_ghost
      @Spacetime_ghost 5 років тому +3

      That is so untrue lol.

    • @elijahjflowers
      @elijahjflowers 4 роки тому +2

      @@Spacetime_ghost richard feynman started as a biologist

    • @Spacetime_ghost
      @Spacetime_ghost 4 роки тому +3

      @@elijahjflowers so that proves that most people who don't do physics can explain it better?

  • @raviraki7183
    @raviraki7183 4 роки тому +13

    Amazing thank you, keep going on

  • @imbenhello
    @imbenhello 8 років тому +1

    You really are the bollocks Eugene, I have watched all your videos several times over now. Wonderfully accessible 👍

  • @saqibraza1083
    @saqibraza1083 2 роки тому +1

    Shining Star of Physics.
    Always stay blessed...

  • @vineetdubey1510
    @vineetdubey1510 8 років тому +6

    you cleared my concepts on conservation of linear momentum sir,

  • @m33LLS
    @m33LLS 5 років тому +6

    Hi Eugene, very nice video! Could you make a video about the dzhanibekov effect (instability when rotating around the intermediate axis of rotation). I can't grasp my head around it how angular momentum is conserved during this effect.

  • @gopalakrishna4815
    @gopalakrishna4815 5 років тому +1

    Best ever explanation I found on the net! Great Work! Pls. Keep going.

    • @EugeneKhutoryansky
      @EugeneKhutoryansky  5 років тому +1

      Thanks. I am glad you liked my explanation. More videos are on their way.

  • @telcharohekatonchire3166
    @telcharohekatonchire3166 3 роки тому +5

    Thank you very much for this high quality content. You have a really good manner to explain this theoretical concept very easily.
    I read about moment of momentum before. I had understood the mathematics behind this object. But I could not figure out correctly how to physically represent it in real life, and the consequences of this concept. For instance, the increasing or decreasing velocity with the opposite decreasing or increasing of rotation radius. With your video is definitely very clear.
    There is so many other subjects you could represent and explain like this.

    • @EugeneKhutoryansky
      @EugeneKhutoryansky  3 роки тому +4

      Thank for the compliments about my video. I have many other videos on my channel in which I explain other subjects in this manner. Thanks.

  • @dr.z101
    @dr.z101 3 роки тому

    My favorite channel ❤ قناتي المفضلة

  • @markandrews1219
    @markandrews1219 8 років тому +1

    Please allow the download button on this video....then I can watch it another few hundred times on my television. Your videos are always high quality due to the clear and concise instructions. Thanks you for putting the time into educating everyone.

  • @mikko_musik
    @mikko_musik 5 років тому +1

    A very nice and clear explanation of a rather confusing topic (angular momentum). Thanks so much! Ill definitely be passing this video along to my students.

    • @EugeneKhutoryansky
      @EugeneKhutoryansky  5 років тому

      Thanks for the compliment about my video. I hope your students like it.

  • @manarbuqai7231
    @manarbuqai7231 9 років тому +7

    +Eugene Khutoryansky I love you 😭

  • @markloveless1001
    @markloveless1001 4 роки тому

    This makes exterior algebra visually obvious. Thank you. Poor ol' Hermann Grassmann was just born too early.

  • @r0cketplumber
    @r0cketplumber 2 роки тому

    I love how the music shifted to Blue Danube as angular momentum was discussed...

  • @oxfordutd30
    @oxfordutd30 4 роки тому

    Thank u thank u thank u, i’ve learned and understand more of ur 20min videos than years of school😍❤️

  • @akashvyas7715
    @akashvyas7715 3 роки тому

    Best explanation I have ever seen in my life

  • @sultankahn9784
    @sultankahn9784 6 років тому

    This lecture is like listening a speech in a Royal Party (by closing eye)
    Feels like present in the 1st Class Prog. in something like the Titanic.
    Excellent Video

  • @srenbrag7269
    @srenbrag7269 9 років тому +2

    A fantastic educational video as always

  • @exceptionalfrog1355
    @exceptionalfrog1355 4 роки тому

    Literally!!!!!! Hats off miss

  • @Mychannel-wx9qm
    @Mychannel-wx9qm 8 років тому +1

    Everything is always explained so well. Thank you

  • @ShayanAli-l1x7b
    @ShayanAli-l1x7b 4 місяці тому +1

    question..... if the ball rotating around an axis has a certain linear momentum, by changing its distance from the center, the linear velocity has to be changed (in order to keep angular momentum constant) which means that the kinetic energy is changed without any external energy source and it seems to be violation of energy conservation. than how can that be possible ...please explain it @Eugene

    • @EugeneKhutoryansky
      @EugeneKhutoryansky  4 місяці тому +1

      To change the ball's distance from the center, a force is applied, thereby adding or removing energy from the system. The energy is being transferred to or away the source of the force.

  • @MaheshWari-f7g
    @MaheshWari-f7g Місяць тому

    I just want to say that this video is wow 🙀🙀

    • @EugeneKhutoryansky
      @EugeneKhutoryansky  Місяць тому +1

      I am glad you liked my video.

    • @MaheshWari-f7g
      @MaheshWari-f7g Місяць тому

      @@EugeneKhutoryansky I am very surprised by your reply sir . And like your million subscribers even I wish to be speaking with you sir (I also know that it wouldn't happen 😅. If that happens means I will reach HD1 galaxy itself sir .And within 272 days I will complete my schooling and I will be free for 3 to 4 months after that.... So due to that (it may sound stupid) can you be my greatest and wonderful and genius physics teacher??
      Thank you once again sir for your free high quality videos we students are very much grateful to you..
      Consider the first paragraph sir 😄

  • @markzambelli1010
    @markzambelli1010 6 років тому +1

    this guy is a god damn genius I swear. No other videos, books, or articles explain and visually represent these abstract concepts so clearly.

  • @cemisgezeksakini406
    @cemisgezeksakini406 7 років тому +1

    Hello Mr. or Ms. Khutoryansky,
    First of all your videos are amazing. Thanks to them i really started to enjoy physics , because now i can visualize the physical concepts and notions much easier and they are nomore boring ,abstract stuff.
    I just wanted to ask the following :
    Shouldn't the parallelogram in 5:08 and following 20 seconds be a triangle so the angular momentum ( the field of the triangle ) stays constant ?
    Thank you very much again.

    • @jamescarmody4713
      @jamescarmody4713 6 років тому +1

      You'll notice the bottom and top get wider as height decreases. So, area field is still constant, and angular momentum is conserved.

  • @Abdullah.A.Almasri
    @Abdullah.A.Almasri 11 місяців тому

    This video is amazing, thank you so much

  • @muhammadfarhankhanqaisrani8220
    @muhammadfarhankhanqaisrani8220 6 років тому

    downloading your all videos.so love form Pakistan.God Bless U

  • @rede_neural
    @rede_neural 2 роки тому

    Your videos are masterpieces

  • @yelectric1893
    @yelectric1893 3 роки тому +1

    Holy moly this parallelogram thing is keplers equal area law , a proof for it, explaining the varying speed in elliptical orbits as the distance between the point and object varies. Holy shit

  • @andrescobark
    @andrescobark 4 роки тому

    I genuinely love this channel!

  • @chauhanssaksham
    @chauhanssaksham 9 років тому +3

    Excellent video as ever!

  • @sarakisafa7283
    @sarakisafa7283 6 років тому

    i love this Channel and i really appreciate all the efforts.

  • @Premed1981
    @Premed1981 9 років тому

    I wish i had a teacher like you Eugene

  • @mrk9713
    @mrk9713 9 років тому

    I became a fan of yours Eugene! Bravo! You are an awesome person! Greetings from Brazil.

    • @EugeneKhutoryansky
      @EugeneKhutoryansky  9 років тому

      +Eduardo Nogueira, thanks for the compliment, and I am glad to have you as a fan.

  • @VlanimationTales
    @VlanimationTales 3 роки тому +1

    Such a beautiful and thorough explanation!

  • @relaxingandpeacefulinstrum990
    @relaxingandpeacefulinstrum990 2 роки тому

    FINALLY, I UNDERSTOOD ANGULAR MOMENTUM

  • @abdulqadir-fz6cf
    @abdulqadir-fz6cf 7 років тому +9

    Mashallah,,what a nice and informative videos with pleasent voice,,,,,,what a student can get something from books an hour,,,he can get that in just 10 or 15 mint by watching these video,,,,,,,,,I appreciat u with open heart,,,,it is request to please upload video on fluid mechanis as well as solid mechanics

    • @EugeneKhutoryansky
      @EugeneKhutoryansky  7 років тому +2

      Thanks for the compliment. I would like to eventually do a video on fluid mechanics, and a video on solid mechanics. Thanks.

  • @bogustafsson387
    @bogustafsson387 2 роки тому

    What happens when the distance between the rotaing objects goes to infinity? In that case the areas seems to go to zero. Is angular momentum no longer conserved at infinity?

  • @padraiggluck2980
    @padraiggluck2980 5 місяців тому

    Really well done, guys. 👍

  • @alexbald12
    @alexbald12 3 роки тому

    How do these objects behave in "The real universe"? How does gravity and the ether effect the motions?

  • @偏差値50が一年後に東大

    ちょうど学校で習ってたのでありがとう😭

  • @Mysoi123
    @Mysoi123 Рік тому

    Hello Eugene, I'm confused by the first statement. Did you ignore Noether's theorem? Since energy is not conserved according to general relativity.

    • @EugeneKhutoryansky
      @EugeneKhutoryansky  Рік тому +1

      Whether energy is conserved in General Relativity is still up for debate. In any case, you can view this as a video just about classical physics.

  • @trongnghianguyen7133
    @trongnghianguyen7133 4 роки тому

    as far as i know that acceleration is the main factor responsible for the velocities changes but in the video,exactly after the perfectly collision in the situation where 2 objects moved in two different directions, i see that the velocity vectors magnitude have simultaniously changed. So my question is what acceleration have caused the velocities magnitude change like that ?

    • @carultch
      @carultch 2 роки тому

      Acceleration is not a cause. Acceleration is a mathematical description of motion. Acceleration is the effect, when a mass is subject to a net force.

  • @whatitmeans
    @whatitmeans 3 роки тому

    In the linear momentum example I get shocked: vectors addition leads to incoming small ball crashing with a big green one happening ā = -ā + 2*ā , the small gets away from it were coming and the other have "twice more momentum than the original"!!... so, What will happen if the green one crashed another small one in chain giving all its moment? It will result in an overall momentum of and incoming ball with momentum ā which ends in a exactly alike ball traveling with momentum 2*ā !!, which is impossible from conservation of energy!!... so my question is: Is really possible to have this ā = -ā + 2*ā collision??? My intuition says from energy conservation also must happen that (incoming momentum)^2 = (final momentum)^2, so this example leads to a^2 = a^2 + 4*a^2 which is obviously wrong, so I think that actually the scenario is impossible (if my assumption is right).
    Also about the parallelogram example refered to an arbitrary point: since the velocity is constant and the radii of the another vector changes more than the cosine of the angle, I believe that the area is not constant.. if the ball have travel to infinity far away the area will certainly be infinite, differently if the vector is rotating towards the point were the parallelogram is always the same. Also if something is not rotating, I believe its angular momentum is zero, so the linearly travelling ball refered to an arbitrary point is not a good example.

  • @devendrabisht9713
    @devendrabisht9713 8 років тому +1

    beautifully explained....
    thankyou

  • @warisbashir8272
    @warisbashir8272 2 роки тому

    Beautiful!

  • @Mysoi123
    @Mysoi123 Рік тому

    Great video again!

  • @cutecatshorts3464
    @cutecatshorts3464 3 роки тому

    Best explanation ever found. Keep it coming

    • @EugeneKhutoryansky
      @EugeneKhutoryansky  3 роки тому

      Thanks for the compliment.

    • @cutecatshorts3464
      @cutecatshorts3464 3 роки тому

      @@EugeneKhutoryansky thank you, actually. Please make videos more on physics with great animations and everything. Especially about electricity, mechanics and thermodynamics. I know you will deliver the best.

  • @selectakey
    @selectakey 6 років тому

    Love the song. And of course the truth

  • @ernestoberger7589
    @ernestoberger7589 2 роки тому

    This was amazing!

  • @360wheelz5
    @360wheelz5 4 роки тому +1

    "Linear momentum is also conserved, since we started out with a linear momentum of zero and ended up with a linear momentum of zero." ~deeply refers to "us" idly sitting, watching this video out of boredom.

  • @RC-uo3ds
    @RC-uo3ds 3 роки тому

    Wow one of the best explanation
    Thanks a lot ❤❤❤❤

    • @EugeneKhutoryansky
      @EugeneKhutoryansky  3 роки тому

      Thanks for the compliment. I am glad you liked my explanation.

  • @Carlos31416
    @Carlos31416 2 роки тому

    Awesome job !💡

  • @gensyed
    @gensyed 4 роки тому

    very educational, enlightening, intuitive! Wow.!

  • @vineshdurga9839
    @vineshdurga9839 6 років тому +1

    Please make some animations in mechanics 1 lessons...involving work-energy-power, pulley systems and projectiles...thanks a lot for the highly informative physics videos

  • @vinodhi576
    @vinodhi576 4 роки тому +1

    Still couldn't understand. What is angular momentum?

    • @carultch
      @carultch 2 роки тому

      Angular momentum is a measure of the sum total of the cross product of the position vector to, and the linear momentum of each particle in a system, with the position vector taken relative to a common reference point. It is a quantity that is conserved and is used as a method for calculating the effects of interactions among objects within a system, when there are no external torques.

  • @vinitverma2438
    @vinitverma2438 Рік тому +1

    No doubt great video but for me the background music was too loud and disturbing...

  • @yubongsong6791
    @yubongsong6791 22 дні тому

    Why does the direction of angular motion apply to the right hand, not the only hand?

    • @EugeneKhutoryansky
      @EugeneKhutoryansky  21 день тому

      It is just how we chose to define the direction of the angular momentum vector. This is just a social convention, not a law of physics. If we chose to define it the other way, all the observable data would still be the same.

  • @omsingharjit
    @omsingharjit 5 років тому

    2:25 but in this animation momentum is not fully transferred to bigger ball but smaller ball bounced why ??

  • @aflahpalara7217
    @aflahpalara7217 4 роки тому

    In the last described image( two rotating particle),the total angular momentum of the rotation is 2* area of the two parallelogram.but how it the same before and after the rotation?why It is not zero?

    • @EugeneKhutoryansky
      @EugeneKhutoryansky  4 роки тому

      It was always rotating, just at different speeds. Therefore, the angular momentum was never zero.

  • @meeharbin4205
    @meeharbin4205 7 років тому +1

    You're one of the best teachers I've had in physics, but somethings been boggling my mind for a while and this video is a perfect opportunity to ask. Could you please explain how the smaller object when colliding with the bigger one(2.25) does not stop. I know in real life it would bounce off but according to Newton's laws of motion it shouldn't.
    According to Newton's third law, there should be an equal and opposite reactionary force on the smaller ball when it applies a force on the bigger ball and since force is equal to the change of momentum, when the bigger ball applies the equal and opposite force, the smaller ball should stop as the force it exerts is equal to it's momentum. This doesn't happen in real life.
    Something that may help you that I've thought of, is from a different example. Consider the smaller ball now stationary, and the bigger ball is moving toward it at a constant velocity. Same situation but the roles switched. When the bigger ball hits the smaller ball, I used to think the bigger ball should stop as the smaller ball produces an equal and opposite force to stop it. But then I realised that the bigger ball does not have to exert its full momentum onto the smaller ball, but only enough so that the move at a similar speed. So the momentum of the larger ball only decreases by a smaller amount as it takes less force to get the smaller ball moving at the same speed. That's my reasoning, unfortunately it does not explain what I mentioned earlier. My reasoning lead me to think that the smaller ball has to exert a larger force than its momentum can give to the larger ball, but it then gets cancelled out when the larger ball exerting the same amount of extra force to the smaller ball making it move in the opposite direction.
    However the reasoning mentioned in the last paragraph alludes to there being a conservation of velocity which definitely sounds untrue. I hope you read and understand my long winded messy post and give some kind of solution based on what you can understand of what I am saying, I hope I'm not wasting your time, sorry :)

    • @tesoh5349
      @tesoh5349 7 років тому +1

      Meeharbi N the reaction is the one object stopping. the force brings the object to zero so there still is a equal and opposite force but it's just the perfect amount to stop it and not have the ball move in another direction

    • @tesoh5349
      @tesoh5349 7 років тому

      Meeharbi N it depends also on how elastic the collision is and if energy is lost in the collision. it does happen all the time so you saying it doesn't is simply wrong

    • @LinuxLuddite
      @LinuxLuddite 5 років тому

      You are understanding is incorrect.
      Please to refer to F=ma .
      let m1 be the smaller ball and m2 be the bigger ball and also let's assume
      m1= 1kg and m2= 10kg .
      then after collision between the balls it is abvious the smaller ball will bounce back with greater acceleration that the bigger ball.
      In this case, by the equation f=ma , we can safely say that it's acceleration (lets assume m1 acceleration be a1 and m2 acceleration be a2) wil be in the ratio 10:1 so as to show f=m1.a1 = m2.a2.

  • @Professional_chemist
    @Professional_chemist 3 роки тому

    Thank you so much. Amazing explanation.

  • @keepitsimple7720
    @keepitsimple7720 3 місяці тому

    Awesome

  • @abduzayirabdukadir4744
    @abduzayirabdukadir4744 9 років тому

    such a wonderful videos , thank you .

    • @EugeneKhutoryansky
      @EugeneKhutoryansky  9 років тому

      +Abduzayir Abdukadir, thanks. I am glad that you like my videos.

  • @rahuljuneja1185
    @rahuljuneja1185 7 років тому

    I love your videos.
    Great job.

    • @EugeneKhutoryansky
      @EugeneKhutoryansky  7 років тому

      Thanks for the compliment. I am glad you like my videos.

  • @dhanucreations844
    @dhanucreations844 4 роки тому

    The video was Amazing!!!
    I wonder how you managed to do such stunning animations??? It was really great, keep making more videos like this...
    And can you tell me how were you able to create these 3d animations did you use any software o'what? Pls, tell I would like to know???

    • @EugeneKhutoryansky
      @EugeneKhutoryansky  4 роки тому +1

      Thanks for the compliment. I make my 3D animations with "Poser", and I do some of the simulations with an add-on purchased separately called "Poser Physics", in addition to the built in simulator called "Bullet Physics." Poser is expensive, but there are also free 3D animation programs available, such as "Blender" and "Daz Studio."

    • @dhanucreations844
      @dhanucreations844 4 роки тому

      @@EugeneKhutoryansky Thank you so much for taking the trouble to answer me your videos are really INCREDIBLE!!!

  • @viniciusmiki3686
    @viniciusmiki3686 4 роки тому

    Hi Eugene, your videos are awesome. As always. What software do you use to make these animations? Tks in advance.

    • @EugeneKhutoryansky
      @EugeneKhutoryansky  4 роки тому

      Thanks for the compliment. I make my 3D animations with "Poser."

  • @jaishreekrishna6539
    @jaishreekrishna6539 5 років тому

    I love this channel

  • @Irma_insides
    @Irma_insides 3 роки тому

    Tq for this vid can u plz tell which software u use or how u make such informative vid plz

  • @thefunofscience2192
    @thefunofscience2192 5 років тому

    Thanks for do this videos, i wanna be like you, greetings from colombia

  • @JohnLux
    @JohnLux 9 років тому +1

    eugene, love your work and thank you
    question -- if we have two objects attracted by gravity, what is the equal and opposite force of that attraction?

    • @EugeneKhutoryansky
      @EugeneKhutoryansky  9 років тому +3

      +John Lux, thanks for the compliment. In reply to your question, when the Sun exerts a gravitational attraction on the Earth, the Earth exerts a gravitational attraction on the Sun. I show an animation of this in my "Laws of Motion" video. Thanks.

  • @Abhishek-hy8xe
    @Abhishek-hy8xe 4 роки тому +1

    What about momentum and angular momentum of universe???

  • @quarksgluons
    @quarksgluons 9 років тому

    When the particles repel each other while rotating ,they spin slower to keep the angular momentum constant.
    But how do we prove that the angular momentum of the universe is always constant during any interaction?

    • @EugeneKhutoryansky
      @EugeneKhutoryansky  9 років тому

      +Ibrahim Chahrour, this is a consequence of Newton's Laws of motion. Since for every force, there is an equal and opposite force, and F = mA, the net consequence is that momentum and angular momentum must be conserved. We also know this through experiment, in that we have always found momentum and angular momentum to be conserved for every experiment we conducted.

  • @ahmedal-ebrashy3691
    @ahmedal-ebrashy3691 7 років тому +8

    What is momentum. Yes I get the calculations and all that suff but never understood what it really means? What is momentum and why is it important?

    • @jesuscastelan2218
      @jesuscastelan2218 7 років тому +1

      One way to define inertia is mass's tendency to keep an individual object's linear (and angular) momentum. Linear momentum can be said to be the required quantity that requires an external force and some time in order to "destroy" it or increase it.

    • @LinuxLuddite
      @LinuxLuddite 5 років тому +1

      @@mangaka08 What is the difference between momentum and kinetic energy?

    • @LinuxLuddite
      @LinuxLuddite 5 років тому

      @@mangaka08 I am totally satisfied with your explanation. Thanks . Just wanted know Can we call Momentum rate of motion ? or work done? or type of energy? or force?

    • @b43xoit
      @b43xoit 5 років тому +1

      @@LinuxLuddite For one thing, momentum is a vector quantity and kinetic energy is a scalar quantity.

    • @carultch
      @carultch 2 роки тому

      @@LinuxLuddite Kinetic energy is significantly more sensitive to velocity than it is to mass. KE also ignores the direction of velocity, because squaring velocity is a self dot product that eliminates the direction. Momentum is equally sensitive to both terms, and maintains the same direction as the direction of velocity.
      Start with mass, i.e. inertia.
      Integrate with respect to velocity from rest once, and you get momentum.
      Integrate with respect to velocity from rest a second time, and you get kinetic energy.
      This is where the 1/2 comes from in the kinetic energy formula.

  • @19673475
    @19673475 7 років тому

    love you moonlight sonatas and also your composer

  • @musicaldarpan629
    @musicaldarpan629 3 роки тому

    Thanks a lot for this beautiful explanation 😃❤️

  • @dancertiffy
    @dancertiffy 7 років тому

    Yes. An amazing presentation. Very informative.

  • @sharp4921
    @sharp4921 4 роки тому

    Thanks for video

  • @bloggervista
    @bloggervista 9 років тому +1

    Wow. Great intuitive concept :)
    I must say no teacher is better than you :)
    I really like the way that you showed cross product :)

    • @EugeneKhutoryansky
      @EugeneKhutoryansky  9 років тому +5

      +Shirshak Bajgain, thanks for that really great compliment, and I am glad that you liked that I used a parallelogram to explain cross product. I also have a parallelogram to explain cross product in my video on Maxwell's Laws, to explain the strength of the force create by a magnetic field on a moving charged particle. Thanks.

  •  6 років тому

    Brilliant explanation. Thanks.

  • @vaibhavkallamadi6959
    @vaibhavkallamadi6959 Рік тому

    Excellent explanation

    • @EugeneKhutoryansky
      @EugeneKhutoryansky  Рік тому +1

      I am glad you liked my explanation. Thanks for the compliment.

  • @omsingharjit
    @omsingharjit 5 років тому

    It's ok for momentum explanation . What what is parallelogram and that purple object concept ????🤔🧐

    • @herpsenderpsen
      @herpsenderpsen 5 років тому +1

      the area of the parallelogram being constant shows that the angular momentum is conserved.

  • @ameerhamza4816
    @ameerhamza4816 10 місяців тому

    wow just wow

  • @agustinlawtaro
    @agustinlawtaro 5 років тому

    Vieja, sos un crack. Great! Thanks!

  • @XxKINGatLIFExX
    @XxKINGatLIFExX 8 років тому

    So simple, and so beautifully explained.

    • @EugeneKhutoryansky
      @EugeneKhutoryansky  8 років тому

      +XxKINGatLIFExX, thanks for the compliment.

    • @XxKINGatLIFExX
      @XxKINGatLIFExX 8 років тому

      Physics Videos by Eugene Khutoryansky Np, keep up the good work. Have you got any vids on Quantum Mechanics and Space?
      Thanks.

    • @EugeneKhutoryansky
      @EugeneKhutoryansky  8 років тому

      +XxKINGatLIFExX, yes I have many videos on those topics. Just check out my UA-cam home page.

    • @XxKINGatLIFExX
      @XxKINGatLIFExX 8 років тому

      Will do thanks!

  • @SydiusVideo
    @SydiusVideo 10 місяців тому

    Thank you

  • @TrueBlackHistory101
    @TrueBlackHistory101 5 років тому

    So why do moons/stars spin backwards creating an angular problem?

  • @Vatea97
    @Vatea97 5 років тому

    How does universe angular momentum stay constant, if momentum itself doesn't conserve in damped systems (with friction)?

    • @EugeneKhutoryansky
      @EugeneKhutoryansky  5 років тому

      We need to take into account the momentum and angular momentum of all the subatomic particles in the material providing the friction, and then we see that the momentum and angular momentum is still conserved.

  • @Epoch11
    @Epoch11 9 років тому

    If the volume of space is increasing and empty space has inherent energy than how can it be said that the amount of energy is constant? Would it not be true that as space expands the level of energy in the universe increases? Or is it perhaps that as space expands the energy of empty space becomes more spread out and therefore weaker? I would imagine this is the case because the speed of the expansion of galaxies seems to be increasing at the current moment.

    • @EugeneKhutoryansky
      @EugeneKhutoryansky  9 років тому

      +Mark G, the phenomena which is responsible for the acceleration of the expansion of the universe is not yet understood, and we have labeled it "dark energy", but it is still believed that this will end up being conserved.

    • @Epoch11
      @Epoch11 9 років тому

      +Mark G Or, I forgot to add, is this statement incorrect because as space expands, the energy in each particular volume of space does not change and only the overall energy changes?

  • @VKgaming7447
    @VKgaming7447 4 роки тому

    beautiful explaination. thanks a ton

  • @m33LLS
    @m33LLS 5 років тому

    Hi Eugene, could you explain why an object showing the Dzhanibekov effect during rotation is conserving its angular momentum?

    • @EugeneKhutoryansky
      @EugeneKhutoryansky  5 років тому

      I will add the Dzhanibekov effect to my list of topics for future videos. Thanks.

  • @EEE-yp8wv
    @EEE-yp8wv 4 роки тому

    excellent

  • @benjaminsisko9250
    @benjaminsisko9250 3 роки тому +1

    Thanks for the explanation. I am still confused, however, whether angular momentum and linear momentum are interchangeable. Can you explain more, please?

    • @carultch
      @carultch 2 роки тому

      They are analogous, but not interchangeable. They are both separate quantities of motion that each are conserved in their own right. Linear momentum is defined as the product of velocity and inertia (i.e. mass), as a way to quantify the time-cumulative effect of a force. Angular momentum considers the linear momentum vector and the radius vector from a reference point, as a way to quantify the interactions that would cause rotational motion. Radius cross product linear momentum, is how we define angular momentum.
      You can have situations where angular momentum is conserved, while linear momentum isn't, but not vicea. They both are ultimately conserved in the universal sense.
      Conservation of linear momentum applies when there are no net external forces acting on the system. Either external forces add up to zero, or aren't present in the first place, or a situation happens so quickly that the external forces can be neglected (like a collision while subject to gravity).
      Conservation of angular momentum applies when there are no net external torques acting on a system, relative to the reference point about which angular momentum is defined. So it is OK that there be radial external forces directed parallel to the radius vector when considering conservation of angular momentum, since these forces don't apply a torque to the system. It is the external forces that are not parallel to the radius vector from the reference point, that need to be either excluded or nullified by other external forces, in order for conservation of angular momentum.

    • @benjaminsisko9250
      @benjaminsisko9250 2 роки тому

      So, it's about different point of view... angular momentum requires a well defined center point, right? Thanks for your explanation, @@carultch.

    • @carultch
      @carultch 2 роки тому

      @@benjaminsisko9250 Yes. Angular momentum requires you to assign a reference point, which is usually selected as the point containing the axis of rotation. You will get a different answer if you assign a different reference point. So a problem may specify an origin to use, and in that case you need to use the point specified. Otherwise, you choose the point to assign as the reference point.
      It is arbitrary what point you chose to assign, although it is usually the case that one particular point will make the math a lot more convenient, and you'd be "asking for trouble" to pick a different point.

    • @benjaminsisko9250
      @benjaminsisko9250 2 роки тому

      @@carultch The reference point (center point) I pick must be in inertial frame, 'coz if I choose an accelerated frame, then the situation above does not apply, right?

    • @carultch
      @carultch 2 роки тому

      @@benjaminsisko9250 Depends on what kind of accelerated reference frame we are talking about. If the reference frame has a constant linear acceleration, you can use the equivalence principle and treat the apparent inertial force the same way as you would treat any other gravitational field if you were in an inertial reference frame. (Put aside the general relativity meaning of inertial reference frame that requires excluding gravitational fields, and stick to the Galilean/Newtonian meaning of the term, for our purposes).
      By contrast, if we are talking about a rotating reference frame, you are much better off looking outside of it, and selecting a point in the inertial reference frame. The Coriolis effect will appear to act as if it is an external torque on any system within a rotating reference frame, which will rule out using conservation of angular momentum unless you also account for the effect.