TFIDF : Data Science Concepts

Поділитися
Вставка
  • Опубліковано 8 січ 2025

КОМЕНТАРІ • 113

  • @pohkeamtan9876
    @pohkeamtan9876 3 роки тому +10

    This is really good. Concise , straight to the point, and there is no need to show a line of code !

  • @vinson2233
    @vinson2233 3 роки тому +3

    I'm really glad to choose this video instead wasting my time watching 30minutes explanation of tf-idf. Great job for explaining this

  • @rt58528
    @rt58528 4 роки тому +3

    Being a math lover, within a minute of your explanation I became your fan, was always in a search of videos like this

    • @mango-strawberry
      @mango-strawberry 9 місяців тому

      true. his channel hasn't been picked up by UA-cam yet.

  • @gunbac74
    @gunbac74 4 роки тому +7

    I read this explanation in a book, but not as clear as this video. Well done!

  • @hemantsah8567
    @hemantsah8567 4 роки тому +2

    Your videos before sleep... Keep nightmares away...

  • @summerxia7474
    @summerxia7474 2 роки тому +1

    Such a clear explanation!!! Much better than my teacher in the class. Why can't they just make it this simple? Thank you so much.

  • @akshikaakalanka
    @akshikaakalanka Місяць тому

    always the best place to look for a concept explained. Always grateful.

  • @stanlukash33
    @stanlukash33 3 роки тому +2

    I started googling tf-idf and then I was like "Hey, maybe that guy has a video on it", and you do! Thanks!

    • @ritvikmath
      @ritvikmath  3 роки тому +3

      😂 "that guy" says you're welcome

    • @stanlukash33
      @stanlukash33 3 роки тому

      @@ritvikmath haha sorry, Ritvik!

  • @Scar_
    @Scar_ Рік тому +2

    Thank you for this! You saved me much time! Your explanation is legit!

  • @mosca-tse-tse
    @mosca-tse-tse 4 роки тому +3

    Excellent teaching! Perfectly designed, clearly explained and not even one sentence that would be redundant. I’m your fan my friend 👍🏼🙏🏼

    • @ritvikmath
      @ritvikmath  4 роки тому

      Wow, thank you!

    • @leod1740
      @leod1740 2 роки тому

      @@ritvikmath Yes excellent explanation

  • @luuz_study_yt7123
    @luuz_study_yt7123 2 роки тому

    Thank you for the video, we are working at a Movie recommender System and this helps a lot for NLP.

  • @elsywehbe2897
    @elsywehbe2897 11 місяців тому +1

    Your examples are excellent! Thank you!

    • @ritvikmath
      @ritvikmath  11 місяців тому +1

      You're very welcome!

  • @imdadood5705
    @imdadood5705 3 роки тому +1

    I wish to have your coherence when explaining. Awesome explanation as always.

  • @BhuvaneshSrivastava
    @BhuvaneshSrivastava 4 роки тому +1

    I like your videos first and then start watching your Data Science videos because I am sure that after I am done watching it, I will like it anyway.
    Keep it up.. 🙏

  • @VishalKhopkar1296
    @VishalKhopkar1296 2 роки тому +1

    if the word 'healthcare' did occur in all 3 speeches, but occurs in the Obama speech 26 times, but only once in Clinton's and Bush's speeches. Using this mechanism, the IDF of healthcare would still be 0, but since the word has been used a considerably large number of times in the Obama speech, it is definitely important

    • @redpz
      @redpz Рік тому

      in a more realistic situation the # of D would be much larger so cases like this would be extremely rare

    • @TheTranscending
      @TheTranscending Рік тому

      Good point

  • @michaelhaag3367
    @michaelhaag3367 2 роки тому

    Lucid explanation, my man back at it again!

  • @David-nw6rz
    @David-nw6rz 3 роки тому

    When using the whiteboard, your videos are even better than with pen and paper! Thanks for your videos!

  • @mila4real1
    @mila4real1 Рік тому

    Cool! Loved your simple but extremely efficient explanation

  • @martand_05
    @martand_05 4 роки тому +3

    What a classy explanation. So good man!

  • @alexfeng75
    @alexfeng75 10 місяців тому

    great video with depth and simplicity at the same time!

  • @hariharvyas4741
    @hariharvyas4741 Місяць тому +1

    What if the word we are checking does not appear in any of the document, then in the denominator it would be 0 which is not possible

  • @butterfly34457
    @butterfly34457 9 місяців тому

    So simple and concise! Thank you so much!

  • @srijitbhattacharya6770
    @srijitbhattacharya6770 2 роки тому

    Excellent , simply briliant

  • @sebastiancamilopuertogalin4478
    @sebastiancamilopuertogalin4478 2 роки тому

    For any given word/term, we want to know how important is that term for a given document, relative to the entire corpus of documents. E.g. for Clinton these subset of words is really important in his inauguration speech, relative to the other inaguration speeches. TF-IDF is simply a multiplication of the metrics TF (term frequency) and IDF (inverse document frequency).

  • @maefiosii
    @maefiosii 3 роки тому +1

    that explanation was so smooth and clear.. great job

  • @nehimomo
    @nehimomo 2 роки тому

    veyr great explanation, much better than my lecturer

  • @balaganesh3440
    @balaganesh3440 Рік тому

    Outstanding explanation!

  • @cesarreinoso2203
    @cesarreinoso2203 3 роки тому

    Awesomeeee Simple and Clear

  • @hameddadgour
    @hameddadgour 2 роки тому

    Great presentation!

  • @k_anu7
    @k_anu7 3 роки тому

    If anyone dislikes this explanation god will have to come down to explain him/her.

  • @ericzhang5987
    @ericzhang5987 2 роки тому

    Excellent explanation !

  • @mohamedshatarah7264
    @mohamedshatarah7264 Місяць тому

    Thank you so much for explaining this clearly sir

  • @pallavijog912
    @pallavijog912 2 роки тому

    Nice explanation. Thanks!

  • @AKapich
    @AKapich Рік тому

    Very succinct explanation, thank you very much

  • @athena9357
    @athena9357 Рік тому

    You saved me! My professor explained this in 3 hours, I watched it 2 times and I don't get it. This guy explained the same concept in 7 minutes and I get it!

  • @devidurga392
    @devidurga392 Рік тому

    clear cut explanation. Thank you

  • @_instanze_
    @_instanze_ Рік тому

    Youre an excellent explanar man. And I don't mean that lightly (I rarely compliment people wallah).
    You got a knack. Truly!
    Subscribed!!

  • @adrianramirez9729
    @adrianramirez9729 2 роки тому

    Amazing explanation!

  • @eramy1
    @eramy1 4 роки тому +1

    Good explanation in a simple way... keep doing well man

  • @ralphhennen5769
    @ralphhennen5769 4 роки тому +1

    How do you model multiple objects associated to a term class: Dental Care: United Health Care, Blue Shield, ..., by state? This becomes contextual and local within the text - how close is the word dental care in the text to UHC, for instance. The result would show which states address dental care in their health insurance regulations and which insurance companies make it available - both in a positive and negative way. Understand that this is a narrow example. Thanks

  • @hannahb.9454
    @hannahb.9454 7 місяців тому

    This came in clutch, thanks

  • @emna143
    @emna143 Рік тому +1

    Hi, first of all, thanks for the great explanation. I have watched your videos about Word2Vec and TF-IDF, and I need help, please. I'm a student working on a project about binary classification of SQL injection attacks. The dataset I have contains two columns: 'sentence' and 'label.' I need to extract features, but I'm confused about which technique to use: Word2Vec or TF-IDF. Can you help me decide?

  • @ernestanonde3218
    @ernestanonde3218 2 роки тому

    Powerful...Thank yoiu

  • @dalvirsingh4070
    @dalvirsingh4070 3 роки тому

    Explanation was awesome!

  • @vaibhavmourya65
    @vaibhavmourya65 Рік тому

    Great explanation buddy🙌🏻

  • @amadios9874
    @amadios9874 2 роки тому

    That was crystal clear, thanks

  • @robertodigiacomo3910
    @robertodigiacomo3910 2 роки тому

    Great explanation

  • @MrKqsami
    @MrKqsami 2 роки тому

    Great Job sir!

  • @mitadrubanerjeechowdhury9092
    @mitadrubanerjeechowdhury9092 3 роки тому

    Amazing stuff, thanks man for letting me pass the exam.

  • @Justrelaxx101
    @Justrelaxx101 2 роки тому

    Perfectly explained

  • @mupetman1214
    @mupetman1214 2 роки тому

    Would you advise to take out stopping words and run tdidf on the new set of documents?

  • @chaitu2037
    @chaitu2037 3 роки тому

    Very well explained

  • @RedditFam
    @RedditFam 2 роки тому

    Very useful! Thank you Sir!

  • @Shaan11s
    @Shaan11s 10 місяців тому

    YES! I get it now, much love bro

  • @MultiRockxD
    @MultiRockxD 2 роки тому

    Is this a good tool to create a top of "important" words in a dataset? or it just helps to see the relevance in a particular document, I want to use it so I can maybe sum all the tdidf of all the documents and create a top words but I don't know if this is the best approach/solution to what I want, thank you in advance

  • @fustigate8933
    @fustigate8933 2 роки тому

    Nice explanation!

  • @bananalord8575
    @bananalord8575 7 місяців тому

    Sweet and simple!

  • @22malman
    @22malman 3 роки тому

    Superb!!

  • @cleansquirrel2084
    @cleansquirrel2084 4 роки тому +1

    Awesome video!!

  • @user-or7ji5hv8y
    @user-or7ji5hv8y 3 роки тому

    Clear and concise.

  • @warislthong3149
    @warislthong3149 11 місяців тому

    Excellent !

  • @pushkarparanjpe
    @pushkarparanjpe 3 роки тому +1

    This is a great explanation. Thanks.
    I have a question about differences between the implementation described in this video and another implementation commonly found on the web.
    Can you explain how these two details would impact the final representation:
    1) Term frequency simply calculated as term count
    2) Applying vector normalisation (L2) to the document vector obtained in this video
    Another question which is more open-ended: why is TfIdf still relevant ? Or less provocatively - is there a sweet spot where one would prefer TfIdf over the modern dense vector representations (such as word2vec, doc2vec, etc.) ?

  • @superbatman1462
    @superbatman1462 4 роки тому +1

    Nice Explanation

  • @negusuworku1871
    @negusuworku1871 10 місяців тому

    iT IS REALLY NICE. KEEP IT UP

  • @mango-strawberry
    @mango-strawberry 9 місяців тому

    damn.. that was a solid explanation

  • @zephyrsurfteam
    @zephyrsurfteam 4 роки тому +1

    Great video! Thanks! I would love to see more content on TFIDF.

  • @swagatggautam6630
    @swagatggautam6630 Рік тому

    I wonder why my teachers couldn't explain so simply.

  • @0xjrr
    @0xjrr 4 роки тому +4

    love that in this alternative timeline the last speech is from Obama

    • @skeletonrowdie1768
      @skeletonrowdie1768 4 роки тому +2

      a certain president would really bias the vocabulary data

  • @almonddonut1818
    @almonddonut1818 2 роки тому

    Thank you so much!!! 🤩

  • @mariapazherrera4306
    @mariapazherrera4306 3 роки тому

    Amazing!!!!!

  • @MYanton1994
    @MYanton1994 2 роки тому

    thank you very much

  • @vasundharasingh8216
    @vasundharasingh8216 10 місяців тому

    in cases where all the 3 documents contain the word, even if 2 of them contain the word only once and the 3rd doc contains it a 100 times, tf idf would be 0 as idf would be 0. isn't this misleading then?

  • @Begooder
    @Begooder 3 роки тому

    many thanks

  • @ai-force3792
    @ai-force3792 Рік тому

    very Good

  • @sia-watsonlee
    @sia-watsonlee 2 роки тому

    amazing

  • @sepideh1111
    @sepideh1111 Рік тому

    Thanks , great teacher if I could I would have given you 3 thumb

  • @Soutehkeshan
    @Soutehkeshan Рік тому

    Useful :)

  • @xxxxxx-wq2rd
    @xxxxxx-wq2rd 4 роки тому

    but if healthcare appears 100 times in one document, and only once in each of the other 2 documents, then the result will be zero!

  • @durasaksham
    @durasaksham 3 місяці тому

    It was that easy

  • @aleynapolat1545
    @aleynapolat1545 2 роки тому

    Bro, you are a good narrator but a bad organizer. It would be better that the next time you write on the board more regularly in order to make it easier to follow what you sayin

  • @australianperson2582
    @australianperson2582 4 роки тому

    Thanks for politicising education with that exclusion with that example, unsubbed - so partisan.

    • @ritvikmath
      @ritvikmath  4 роки тому +4

      Sorry to see you go, it was not my intention to politicize but rather just to use this as an example.

  • @abdulbasit0123
    @abdulbasit0123 7 місяців тому

    That was a great explanation, Thanks 🤍

  • @jb_kc__
    @jb_kc__ 9 місяців тому

    your explanations are great bro cut to the heart of the issue + ensure conceptual understanding 🫡🫡

    • @ritvikmath
      @ritvikmath  9 місяців тому

      Thank you so much 😀