Principal Component Analysis in R: Example with Predictive Model & Biplot Interpretation

Поділитися
Вставка
  • Опубліковано 11 січ 2025

КОМЕНТАРІ • 356

  • @shawnmckenzie8699
    @shawnmckenzie8699 5 років тому +2

    To install ggbiplot, the code is now (17, Jan, 2020):
    library(devtools)
    install_github("vqv/ggbiplot")
    source: github.com/vqv/ggbiplot
    Excellent video and well explained these concepts. Thanks.

    • @bkrai
      @bkrai  5 років тому +1

      Thanks for the update!

  • @philipabraham5600
    @philipabraham5600 7 років тому +3

    This is the best PCA explanation I have seen anywhere so far. Thank you for sharing your knowledge.

    • @bkrai
      @bkrai  7 років тому

      Thanks for the feedback!

  • @ramram2utube
    @ramram2utube Рік тому +2

    I revisited your video for interpretation of biplots in PCA. Many thanks.

    • @bkrai
      @bkrai  Рік тому

      You are welcome!

  • @ramram2utube
    @ramram2utube 2 роки тому +2

    Thanks a lot Sir for your nice presentation. You saved my time. Earlier I used your R codes on Kohonen NN and now for PCA for my training lectures. Your explanation is so lucid. I appreciate your noble service of sharing knowledge

    • @bkrai
      @bkrai  2 роки тому

      You are most welcome!

  • @jacklu1611
    @jacklu1611 2 роки тому +2

    The Bio-plot was explained very clearly, thank you Dr. Rai!

    • @bkrai
      @bkrai  2 роки тому

      You are welcome!

  • @modelmichael1972
    @modelmichael1972 7 років тому +7

    Awesome video. Every R enthusiast needs to keep an eye on your channel. Thank you and keep up with great work!

    • @bkrai
      @bkrai  7 років тому +1

      +Model Michael thanks👍

    • @padhanewalaullu
      @padhanewalaullu 7 років тому

      Sir,
      Can we get code file ?

  • @Dejia_Space
    @Dejia_Space 4 роки тому +2

    Thank you!!Best explanation on Biplot on UA-cam .

    • @bkrai
      @bkrai  4 роки тому

      Glad it was helpful!

  • @nyatonkitnya4267
    @nyatonkitnya4267 3 роки тому +2

    one really good video i have found. After watching few of your video now your videos are becoming a "turn to" when require. thanks

    • @bkrai
      @bkrai  3 роки тому

      Glad to hear that!

  • @abdullahmohammed8521
    @abdullahmohammed8521 4 роки тому +2

    Many thanks for you Dr. God bless you.

    • @bkrai
      @bkrai  4 роки тому

      You are most welcome!

  • @jonm7272
    @jonm7272 4 роки тому +4

    Thank you for this extremely helpful, and easily understood tutorial, particularly the clear interpretation of the Bi-Plot. Much appreciated

    • @bkrai
      @bkrai  4 роки тому

      You're very welcome!

  • @WahranRai
    @WahranRai 3 роки тому +3

    19:12 It is only for purpose to show another way to get the principal component related to training because :
    identical(pc$x, predict(pc,training)) gives TRUE meaning that pc$x is same as predict(pc,training).

    • @bkrai
      @bkrai  3 роки тому

      That's correct!

  • @NIKHILESHMNAIK
    @NIKHILESHMNAIK 5 років тому +2

    You are too good sir. An absolute treat for ML enthusiasts.

    • @bkrai
      @bkrai  5 років тому +1

      Thanks for your comments!

  • @earlymorningcodes6100
    @earlymorningcodes6100 4 роки тому +1

    Orthogonality of principal component- 10:17

  • @srujananeelam6547
    @srujananeelam6547 5 років тому +2

    Fantastic session.Perfectly understood Biplot

    • @bkrai
      @bkrai  5 років тому

      Thanks for comments!

  • @bucklasek1
    @bucklasek1 3 роки тому +2

    Thanks for the video! It helped me a lot doing the forecasting for future values using PCA.

    • @bkrai
      @bkrai  3 роки тому

      Very welcome!

  • @theeoddname
    @theeoddname 7 років тому +3

    Great Video! Excellent walk though on PCA and how it can be useful for actual classifications. Thanks for the upload.

    • @bkrai
      @bkrai  7 років тому

      +theeoddname thanks for the feedback!

  • @deepikachandrasekaran3554
    @deepikachandrasekaran3554 3 роки тому +2

    Very useful video sir. Could you explain me what is the need to partition the data into training and testing data?

  • @flamboyantperson5936
    @flamboyantperson5936 7 років тому +3

    This is great. I was looking for PCA and you have done it. Many many thanks to you sir.

  • @nyadav378
    @nyadav378 Рік тому +1

    Very informative and nice presentation sir, sir can we estimate PCA for factor (for eg species) with unequal no. of observation.
    And we want to see the correlations in terms of each species viz for setosa or other two, how to do it? Please explain...Thank You

  • @Drgautham
    @Drgautham 3 місяці тому +2

    Thank you so much Professor🙏

    • @bkrai
      @bkrai  3 місяці тому +1

      You are very welcome!

  • @galk32
    @galk32 5 років тому +2

    One of the best PCA videos i ever seen, Thank you Mr. Rai.

    • @bkrai
      @bkrai  5 років тому

      Thanks for comments!

  • @affyy04
    @affyy04 3 роки тому +2

    Thank you for this amazing video. Better than my university lectures

    • @bkrai
      @bkrai  3 роки тому

      Thanks for comments!

  • @jonimatix
    @jonimatix 7 років тому +3

    I really like your explanations in your videos. Keep them coming! Thanks

    • @bkrai
      @bkrai  7 років тому

      Thanks for the feedback!

  • @eldrigeampong8573
    @eldrigeampong8573 4 роки тому +2

    Thank you so much Dr. Rai. Detailed teaching

    • @bkrai
      @bkrai  4 роки тому

      Thanks for comments!

  • @saurabhkhodake
    @saurabhkhodake 7 років тому +3

    This video is worth its weight in gold

  • @babadrammeh656
    @babadrammeh656 2 роки тому +2

    R PCA IS VERY GOOD PACKAGE AND VERY HELPFULL

    • @bkrai
      @bkrai  2 роки тому

      Yes, I agree!

  • @koparka112
    @koparka112 2 роки тому +1

    Thank you for the material. It is very clear and actually very relevant to my current work.
    As I understand, the conversion of the data comprises addition products of notmalized predictors and loadings.
    Maybe you would have time to post a PLS regression video, please? The intriguing part is the explanation of the model itself

  • @Rutvi_patel_1111
    @Rutvi_patel_1111 7 років тому +3

    Fabulous work in PCA ! Keep it up

    • @bkrai
      @bkrai  7 років тому +1

      Thanks for the feedback!

  • @earlymorningcodes6100
    @earlymorningcodes6100 4 роки тому +1

    scatter Plat and Correlation- 2:04

  • @donne4real
    @donne4real 4 роки тому +2

    Wonderful job explaining the material.

    • @bkrai
      @bkrai  4 роки тому

      Thanks for your comments and finding it useful!

  • @ashishsangwan5925
    @ashishsangwan5925 6 років тому +2

    Awesome Explanation

    • @bkrai
      @bkrai  6 років тому

      make sure you run following before installing:
      library(devtools)

  • @ConeliusC33
    @ConeliusC33 7 років тому +4

    Your videos have been constant companions during the last months of my master thesis. It seemed as if every time I had to switch to another analysis technique you were allready waiting here. So thank you a lot for your guidance and clear explanations!
    The only thing I would appreciate would be if you could provide the basic R scripts. Even though the copying process might help with understanding each command due to step by step application, to type text of a tiny youtube screen shown in one half of my monitor to r studio in the other half is troublesome. Thanks!

    • @bkrai
      @bkrai  7 років тому

      Thanks for the feedback!

  • @upskillwithchetan
    @upskillwithchetan 5 років тому +3

    Really really great explanation sir, Thank you so much for making it very simple

    • @bkrai
      @bkrai  5 років тому

      Thanks for comments!

  • @abhishek894
    @abhishek894 3 роки тому +1

    Thank you for this nice video Dr. Rai.
    I have a doubt. Why the predict function was used multiple times. After the prcomp function, all the data of Principle components were available in:
    pc$x.
    Why do we have to do:
    trg

    • @bkrai
      @bkrai  3 роки тому

      In R you can get same thing in multiple ways. This is just for illustration.

    • @abhishek894
      @abhishek894 3 роки тому +1

      @@bkrai Thank you Sir. That makes it clear.

    • @bkrai
      @bkrai  3 роки тому

      @@abhishek894 You are welcome!

  • @souvikmukherjee7977
    @souvikmukherjee7977 2 роки тому +2

    sir, please make a session on factor analysis with prediction

    • @bkrai
      @bkrai  2 роки тому

      Thanks for the suggestion!

  • @siddharthadas86
    @siddharthadas86 7 років тому +3

    Seriously awesome explanations! Thank you again.

    • @bkrai
      @bkrai  5 років тому

      Thanks!

  • @ainli4125466
    @ainli4125466 2 роки тому +1

    Thank you for sharing, I get an error "Error in plot_label(p = p, data = plot.data, label = label, label.label = label.label, : Unsupported class: prcomp"", when I try to run the ggbiplot. Would you please advise how to fix it?

  • @asiangg
    @asiangg 7 років тому +3

    Thank you. Learned a lot from your channel

    • @bkrai
      @bkrai  7 років тому

      Thanks!

  • @johnstevenson6458
    @johnstevenson6458 2 роки тому +1

    Great video. Do you have a suggested package for running binary logistic regression? From a brief scan of nnet it appears to only have arguments for multinomial response variables. Thank you.

    • @bkrai
      @bkrai  2 роки тому

      You can refer to this:
      ua-cam.com/video/AVx7Wc1CQ7Y/v-deo.html

    • @johnstevenson6458
      @johnstevenson6458 2 роки тому +1

      @@bkrai sorry I was unclear in my message. I was hoping for a suggested package to run a binary logistic regression using PCA components as predictors - similar to what you have done here with multinomial. Any suggestions are welcome.

    • @bkrai
      @bkrai  2 роки тому

      Yes, you can use the PCA components as predictors and run binary logistic regression as shown in the link that I sent earlier.

  • @dioagusnofrizal9773
    @dioagusnofrizal9773 4 роки тому +2

    Thanks sir, why in this video use linear regression? Can i use k means to clustering from pc1 and pc2?

    • @bkrai
      @bkrai  4 роки тому

      Which line are you referring to?

    • @dioagusnofrizal9773
      @dioagusnofrizal9773 4 роки тому

      Sorry, i mean logistic regression in line 59

  • @golumworks
    @golumworks 2 роки тому +1

    If I just use addEllipses =TRUE, what determines the size of those ellipses? Also, if I specify ellipse.type = “confidence”, what confidence level is used to generate the ellipses? I used factoextra if that helps.

  • @inesceciliacardonadevoz5072
    @inesceciliacardonadevoz5072 4 роки тому +2

    Thanks for this video sir, very good class but I can´t get it. because Error ... could not find function "ggbiplot". Excuse me, which is your R version ?

    • @bkrai
      @bkrai  4 роки тому

      Try this:
      library(devtools)
      install_github("vqv/ggbiplot")

  • @jinnythomas9815
    @jinnythomas9815 4 роки тому +2

    Great Explanation....

    • @bkrai
      @bkrai  4 роки тому

      Thanks!

  • @azzeddinereghais7494
    @azzeddinereghais7494 4 роки тому +1

    Good evening
    If you want to show the first dimension (Dim1) and the third dimension (Dim3)
    What to do or if you can provide the code for that
    Thanks

  • @maf4421
    @maf4421 3 роки тому +2

    Thank you Dr. Bharatendra Rai for explaining PCA in detail. Can you please explain how to find weights of a variable by PCA for making a composite index? Is it rotation values that are for PC1, PC2, etc.? For example, if I have (I=w1*X+w2*Y+w3*Z) then how to find w1, w2, w3 by PCA.

    • @bkrai
      @bkrai  3 роки тому

      For calculations you can refer to any textbook.

  • @LlamaFina
    @LlamaFina 6 років тому +2

    Great video! Thanks for sharing your knowledge.

    • @bkrai
      @bkrai  6 років тому

      Thanks for comments!

  • @soumyanayak445
    @soumyanayak445 5 років тому +2

    Sir why have you predicted the training and test data with respect to PC? can use trg data for making neural model and test using tst data set? and find correlation b/w act and predicted values?

    • @bkrai
      @bkrai  5 років тому +1

      When there are many variables, chances of having multicollinearity problem increases. And PCA helps to solve that problem. And yes, you can use neural network model.

    • @soumyanayak445
      @soumyanayak445 5 років тому +1

      @@bkrai sir can you please explain me the significance of the lines under the heading: prediction with principle components.As I am unable to understand why we are predicting twice on test data set. Please explain sir

    • @bkrai
      @bkrai  4 роки тому

      To avoid over-fitting where you get very good result from training data but not so from testing.

  • @mukhtaradamuabubakar370
    @mukhtaradamuabubakar370 3 роки тому +1

    Nice video and very helpful, I have challenges while installing the ggbiplot and mnet packages (am using R version 3.6.3) please any advice on how to over come such challenge?

    • @mukhtaradamuabubakar370
      @mukhtaradamuabubakar370 3 роки тому

      OK for the nnet package it was successfully installed. but still struggling with the ggbiplot (despite using your codes). thanks

  • @adityapatnaik7078
    @adityapatnaik7078 6 років тому +3

    too good!! plz make more such videos...plz!

    • @bkrai
      @bkrai  6 років тому

      Thanks for comments! You may find this useful too:
      ua-cam.com/play/PL34t5iLfZddu8M0jd7pjSVUjvjBOBdYZ1.html

  • @ramp2011
    @ramp2011 7 років тому +2

    Awesome video. Thank you. As time permits can you do a video on use of caret package? thank you

    • @bkrai
      @bkrai  5 років тому

      Saw this today. Thanks for comments!

  • @numitayogesh9280
    @numitayogesh9280 7 років тому +3

    great lecture..please share your thoughts on machine learning introduction too

    • @bkrai
      @bkrai  7 років тому

      For machine learning such random forest, neural networks, support vector machines, and extreme gradient boosting, you can refer to following:
      ua-cam.com/play/PL34t5iLfZddu8M0jd7pjSVUjvjBOBdYZ1.html

  • @andreafiore8373
    @andreafiore8373 4 роки тому +1

    Thank you, this video will be really helpful to complete my thesis :)

    • @bkrai
      @bkrai  4 роки тому +1

      Good luck!

  • @manpreetkaur7716
    @manpreetkaur7716 2 роки тому +1

    Add a video on non negative matrix factorization like intNMF

    • @bkrai
      @bkrai  2 роки тому

      Thanks, I've added it to my list of future videos.

  • @prithvivasireddy5564
    @prithvivasireddy5564 5 років тому +2

    Awesome video sir...kudos... :)
    1 doubt though .... 20:48 - why are we using 2 components only? How do we know how many principal components to use?(species ~ PC1 + PC2)

    • @bkrai
      @bkrai  5 років тому

      2 PCs capture more than 95% of the variability in the data. Other 2 only add about 5%. So you can choose to have PCs that capture over 80% or 90% of the variability.

  • @alessandrorosati969
    @alessandrorosati969 Рік тому +1

    can a dataset consisting of the principal components and the target variable be used to perform machine learning techniques?

    • @bkrai
      @bkrai  Рік тому

      Yes, this video shows an example of doing it.

  • @katherinechau5594
    @katherinechau5594 3 роки тому +2

    your videos are great :)

    • @bkrai
      @bkrai  3 роки тому

      Thank you!

  • @sainandankandikattu9077
    @sainandankandikattu9077 6 років тому +2

    Awesome video! Could you plz add Partial least squares regression and principal components regression to your playlist! That would be of great help. Thanks in advance!

    • @bkrai
      @bkrai  4 роки тому

      Thanks for suggestions!

  • @samdavepollard
    @samdavepollard 7 років тому +2

    Thank You - this was extremely useful.
    Very nice channel you have here - easy sub.

    • @bkrai
      @bkrai  5 років тому

      Thanks for comments!

  • @anigov
    @anigov 6 років тому

    Dear Sir..thanks for a wonderful video. I have some questions.
    1) At 20:18, why did u choose to reorder by setosa?
    2)Why did you choose to use data as trg and not training to build mymodel given that trg has predictions from training
    3) Can PCA be used to choose k in kmeans. If so, how to go about it?
    Thanks again.
    Regards

  • @abiani007
    @abiani007 4 роки тому +1

    Can you upload a video describing independent component analysis in R

    • @bkrai
      @bkrai  4 роки тому +1

      I've added it to my list.

  • @aks1008
    @aks1008 Рік тому +2

    Sir can I use boruta function instead of pca in r..

    • @bkrai
      @bkrai  Рік тому +1

      Yes certainly. Here is the link:
      ua-cam.com/video/VEBax2WMbEA/v-deo.html

    • @aks1008
      @aks1008 Рік тому +1

      @@bkrai sir what do you like between r and python..i find r code more easy to understand and write..

    • @bkrai
      @bkrai  Рік тому +1

      In universities, business students usually use R and computer science students mostly use Python. If you are mainly looking to apply various machine learning and statistical methodologies, R is perfect.

  • @SaranathenArun11E214
    @SaranathenArun11E214 6 років тому +3

    brilliant sir..simple and sweet..thanks...nice music....if i have 10 DISCRETE VARIABLEShow to reduce to 2 or 3 components, please explain?

    • @bkrai
      @bkrai  6 років тому

      Thanks for comments! Note that this method is only for numeric variables.

  • @dejunli6417
    @dejunli6417 2 роки тому +1

    Hi, I want to know from where can I get the iris example data ? thank you!

    • @bkrai
      @bkrai  2 роки тому

      It's inbuilt in R itself. You can access it by running first 3 lines shown in the video.

  • @siddharthabingi
    @siddharthabingi 7 років тому +3

    Great lecture. Thanks.

    • @bkrai
      @bkrai  5 років тому

      Thanks!

  • @GeFaaaA
    @GeFaaaA 5 років тому +1

    Hello very nice video!!! i have a question. Do you how i choose how many PC i have to use and which ones ???

    • @bkrai
      @bkrai  5 років тому +1

      When you have many PCs, you can select first few that capture almost all variability contained in data.

    • @GeFaaaA
      @GeFaaaA 5 років тому +1

      @@bkrai thank you for your response! So I have to test every possible model , right? Do you know if I can use something like a criterion ?

    • @bkrai
      @bkrai  4 роки тому

      It is good to capture over 80% of the variability.

  • @mukeshchoudhary2842
    @mukeshchoudhary2842 4 роки тому +2

    Great video.. What if we want to include factor-like "Control and Heat" for genotypes? Please suggest

    • @bkrai
      @bkrai  3 роки тому

      It should work fine.

  • @murilocintra180
    @murilocintra180 7 років тому +2

    Excellent demonstration of PCA, really helpful​. I just don't understand why in pc object, you use only training data instead of the entire data.

    • @bkrai
      @bkrai  7 років тому

      We only use training data so that we can later use test data to assess prediction model.

  • @saifsplaka
    @saifsplaka 7 років тому +2

    Hi Sir,Could you take one session on SVD in R and also some theoretical explanation on it. I m finding it very difficult to understand it with most of the material available on the net.

  • @sonalichakrabarty1618
    @sonalichakrabarty1618 3 роки тому +2

    Can you please show back propagation algorithm in r

    • @bkrai
      @bkrai  3 роки тому

      Refer to this:
      ua-cam.com/video/-Vs9Vae2KI0/v-deo.html

  • @jayashriraghunath3210
    @jayashriraghunath3210 5 років тому +2

    Awesome explanation sir...👍👍can you make a video for independent component analysis using r in the same way sir?

    • @bkrai
      @bkrai  5 років тому

      Thanks, I've have added it to my list.

  • @statistician2856
    @statistician2856 3 роки тому +1

    sir my data is showing [ reached getOption("max.print") -- omitted 10 rows ]. the last 10 rows are omitted, how to fix this, please

    • @bkrai
      @bkrai  2 роки тому +1

      That's just how much gets printed. But all data still remains intact.

  • @ketanverma7839
    @ketanverma7839 3 роки тому +2

    is there any other alternative package for ggbiplot ?

    • @bkrai
      @bkrai  2 роки тому +1

      Try this for biplot ( I just now ran this in RStudio cloud, and it worked fine):
      library(devtools)
      install_github("fawda123/ggord")
      library(ggord)

  • @jinnythomas9815
    @jinnythomas9815 4 роки тому +2

    Thanks for the video
    Please publish video on Exploratory Factor Analysis,Confirmatory Factor Analysis application in a model
    Also please explain the difference from PCA

    • @bkrai
      @bkrai  4 роки тому

      Thanks for the suggestion, I've added this to my list.

  • @sebvangeli
    @sebvangeli 7 років тому +3

    Great work! Thank you

  • @Pankajjadwal
    @Pankajjadwal 7 років тому +3

    It was a fruitful video.Can you please share the code.

  • @kashgarinn
    @kashgarinn 6 років тому +1

    Great video, thanks for uploading.

    • @bkrai
      @bkrai  6 років тому

      Thanks for comments!

  • @seaatm
    @seaatm 6 років тому +3

    Cool video! Can you do a video about Multiple Correspondance Analysis(MCA) for cualitative data? It would help me a lot

    • @bkrai
      @bkrai  6 років тому

      Thanks, I've added this to my list.

  • @BbakMs
    @BbakMs 7 років тому +1

    Sir, I am doing PCA analysis on DJ 30 Stocks and when I view pca$loadings for 30 variables, I noticed that some were not displayed. For example, Component 1 has -0.218 for Apple but then shows none for JPM, what does this mean?

  • @md.tabibulislam9740
    @md.tabibulislam9740 7 років тому +1

    Firstly thank you for your helpful video. I have problem to add ellipse in the plot. I have 30 variables, first 29 is the numeric and last one is the factor variables. But i can,t plot the ellipse in the PCA plot. How can i solve this? Please help.

  • @MinhasA
    @MinhasA 6 років тому +2

    thank you for the amazing video!

    • @bkrai
      @bkrai  6 років тому

      Thanks for comments!

  • @mohammadj.shamim9342
    @mohammadj.shamim9342 7 років тому +2

    Dear Respected Sir,
    I wanted to install ggbiplot using the command you provided with us. but it gives me another message. The message is (Installation failed: SSL certificate problem: self signed certificate in certificate chain
    Warning message:
    Username parameter is deprecated. Please use vqv/ggbiplot) I used vqv/ggbiplot as well, but no good results.
    please guide me what shall I do?

    • @bkrai
      @bkrai  7 років тому

      Not sure what went wrong. May be some typo or something else. Probably you can try running commands using my R file.

  • @mamadououattara210
    @mamadououattara210 2 роки тому +1

    Hi Dr, How to I use PCA to generate a score based on several variables? Regards

  • @PrimoSchnevi
    @PrimoSchnevi 4 роки тому +2

    Hello. I dont know anything about Principal Component Analysis in R: Example with Predictive Model & Biplot Interpretation and i will never need to since thats not in my line of work. I Appreciate your Intromusic though. You are a true champ Bharatendra and enrich this world with your presence. Also that intro music fucking slaps.

    • @bkrai
      @bkrai  4 роки тому

      Thanks for comments!

  • @indranipal8131
    @indranipal8131 4 роки тому +2

    Do you have a video on PCA for unsupervised learning via clustering and similarity ranking?

    • @bkrai
      @bkrai  4 роки тому

      not yet.

  • @sidraghayas8583
    @sidraghayas8583 5 років тому +3

    Can you please help with combined pca and ann model?

    • @bkrai
      @bkrai  5 років тому

      I'm adding to the list of future videos.

  • @keshavnemeli
    @keshavnemeli 6 років тому +1

    @5:47 He says the Average of the variables are converted to zeroes
    @6:34 The means(Average) are non-zero
    I Don't understand can anyone Explain?/

    • @bkrai
      @bkrai  6 років тому +1

      @5.47 refers to standardizing process before principal component analysis.
      @6.34 provides means of original dataset

  • @abhiagni242
    @abhiagni242 7 років тому +2

    thanks for the video sir... helped a lot :)

    • @bkrai
      @bkrai  7 років тому

      Thanks for the feedback!

  • @wani212
    @wani212 6 років тому +1

    Thank you so much for this video. Will you please make a video on Broken-line regression in R?

    • @bkrai
      @bkrai  6 років тому

      Thanks for the suggestion, I've added this to my list.

  • @highway2chill
    @highway2chill 3 роки тому +2

    thank you a lot for this support sir.
    If you could provide further guidance it would be very helpful. I am trying to build a models for metastasis prediction using single cell gene expression levels.
    kindly let me know if it would be possible for you. thanks again

    • @bkrai
      @bkrai  3 роки тому +1

      You may find this useful:
      ua-cam.com/video/Uil2GZa8gbg/v-deo.html

  • @sunilbobb
    @sunilbobb 6 років тому +2

    Sir - Requesting you to kindly give a lecture advanced r programming like on H20 packages etc..

    • @bkrai
      @bkrai  6 років тому

      Thanks for the suggestion, I've added this to my list.

  • @hr_foods
    @hr_foods 4 роки тому +1

    Thanks for good video. Sir I am using R 3.6.1 version unable to install devtools and ggbiplot also. If devtools install then show that usethis package is missing please solve my issue.

    • @bkrai
      @bkrai  4 роки тому +1

      I would suggest upgrade R. Currently it is around 4.

    • @hr_foods
      @hr_foods 4 роки тому +1

      @@bkrai I upgrade it but still this problem happen

    • @bkrai
      @bkrai  4 роки тому

      Try this:
      library(devtools)
      install_github("vqv/ggbiplot")

    • @hr_foods
      @hr_foods 4 роки тому +1

      @@bkrai I used these codes but not install error occured

    • @bkrai
      @bkrai  4 роки тому

      After intalling make sure to run library.

  • @deepthibhadran4181
    @deepthibhadran4181 4 роки тому +1

    sir can u please make one video on k means clustering and classification and regression tree analysis

    • @bkrai
      @bkrai  4 роки тому

      See this link:
      ua-cam.com/video/5eDqRysaico/v-deo.html

    • @deepthibhadran4181
      @deepthibhadran4181 4 роки тому +1

      @@bkrai thank you sir

    • @bkrai
      @bkrai  4 роки тому

      You are welcome!

    • @deepthibhadran4181
      @deepthibhadran4181 4 роки тому +1

      @@bkrai Sir do you know about WRF model

    • @bkrai
      @bkrai  4 роки тому

      yes

  • @nahalhoghooghi8575
    @nahalhoghooghi8575 6 років тому +2

    Great job, same as always. Can I use PCA for 2 or more categorical variables? Can I define those variables as 0 and 1 in PCA?

    • @bkrai
      @bkrai  6 років тому

      You can only use numeric variables. You can try using 0 and 1 and see if it works ok.

  • @scholars.home999
    @scholars.home999 4 роки тому +1

    Sir, can you please suggest how I can perform PCA on my Panel Data? -Regards

  • @safeeqahmed3306
    @safeeqahmed3306 6 років тому +2

    Great video. I have one doubt. What does the stddev attribute of PC contain? Standard deviations of the variables are already in scale..so what does stddev represent? Thanks a lot

    • @bkrai
      @bkrai  6 років тому

      At what point in time do you see this?

    • @safeeqahmed3306
      @safeeqahmed3306 6 років тому +1

      Bharatendra Rai sorry it’s sdev attribute of pc and in 9:48 while showing the summary of pc, I would like to know what the standard deviation row denote..thanks a lot

    • @bkrai
      @bkrai  6 років тому

      It is standard deviation related to principal components. It helps to estimate what percentage of variability is captured by each principal component.

    • @safeeqahmed3306
      @safeeqahmed3306 6 років тому +1

      Bharatendra Rai thanks a lot. I understand this now

  • @earlymorningcodes6100
    @earlymorningcodes6100 4 роки тому +1

    5:01 Principal component Analysis

  • @garykuleck1320
    @garykuleck1320 2 роки тому +1

    Dr. Rai,
    Thanks for this informative video. I am having a problem getting the predict function to work with the model created on the training dataset. I am getting two errors(paraphrased): 1. NAs not allowed in subscripted assignments; 2. newdata has 1900 rows but variables found have 8100 rows. I think it is looking for the same number of rows in the test dataset. Is there something I am doing wrong? Appreciate any feedback.

    • @bkrai
      @bkrai  2 роки тому

      NAs occur when there is missing data. For handling missing values, refer to:
      ua-cam.com/video/An7nPLJ0fsg/v-deo.html

  • @k5555-b4f
    @k5555-b4f 7 років тому +2

    Hello great video as always! However one question i had (even though you warned against hard interpretability of results) relates to how to interpret the coefficients. If we look at the coefficient table and read the first line (after the intercept), does that mean that with every increase of Sepal.Length there is a log odd increase of 14.05 in the probability of categorizing the specie as Versicolor, relative to a Setosa? Thanks!

    • @bkrai
      @bkrai  7 років тому

      Your interpretation is correct.

    • @k5555-b4f
      @k5555-b4f 7 років тому +1

      Thank you! Keep up the good work! Your r videos are great!

    • @VenkateshDataScientist
      @VenkateshDataScientist 7 років тому

      Sir ..ggbiplot is not installed hence cant work on this ..though i followed the video throughly

  • @sathishrs3
    @sathishrs3 7 років тому +3

    Hi Sir, your materials are simple and wonderful. Pls do one video for xgboost. that would be great.

    • @bkrai
      @bkrai  7 років тому +1

      Thanks for the suggestion!

    • @sathishrs3
      @sathishrs3 7 років тому

      Bharatendra Rai Thanks a lot sir.

    • @flamboyantperson5936
      @flamboyantperson5936 7 років тому

      I agree with sathish ravi, Sir please make a video on xgboost. You are one stop solution for every problem and I will remember you all my life.

  • @rainbowdu509
    @rainbowdu509 7 років тому +2

    Thanks much appreciated..
    it worked