Bhaiya Main kb se ek sahi channel dekh rahi thi real analysis ke ke liye pr koi Mila hi nhi ... Aap pura in depth padha rahe ho .. thank you and keep going 👍😊
Limit of squence में एक से ज्यादा limit point ho sakte hai... Condition ye hai ki bs |an-l |< ∆ for all n≥m (l is m^th term ). अगर condition satisfie होती है तो "l" limit of sequence hoga..। convergent sequence में |an-l |
Unique limit point 1 necessary condition Hai convergent hone k liye...Pr sath hi sath sequence bounded bhi hone chahiye ye bhi zaroori hai..Hope it helps..
@@vaibhavimundhe or aap ase bhi samjh sakti h ki agr limit co-domain m aa rehi h toh convergent sequence hogi ....example , a: N to [0,1] agr humne an =1/n le liya or ye 0 pe converge krti h or 0 co domain m aa raha h........convergent seq implies bounded seq but converse need not be true . eg (-1)^n
Bhaiya Main kb se ek sahi channel dekh rahi thi real analysis ke ke liye pr koi Mila hi nhi ... Aap pura in depth padha rahe ho .. thank you and keep going 👍😊
Well explained 🥰🙏
19:19 maazzaaa aagya.. 🔥🔥
Thanks bhaiya....😃👍👍
Thankyou so much bhaiya 🫥❤️ bht dudhne ke badh ap jese padhne vale mill gye UA-cam prr thankyou thankyou so much ❤️❤️❤️❤️❤️❤️❤️
Op lecture ❤❤❤❤
26:23 Bhaiya yeh seq tho, convergent hoga na? Oscillatory kaise Hua....??
sir 1/n cauchy sequence nahi hai par convergent hai aisa kaise?
Limit of squence में एक से ज्यादा limit point ho sakte hai... Condition ye hai ki bs |an-l |< ∆ for all n≥m (l is m^th term ). अगर condition satisfie होती है तो "l" limit of sequence hoga..।
convergent sequence में |an-l |
Unique limit point 1 necessary condition Hai convergent hone k liye...Pr sath hi sath sequence bounded bhi hone chahiye ye bhi zaroori hai..Hope it helps..
@@MATHSSHTAMOFFICIAL thanks..
@@vaibhavimundhe or aap ase bhi samjh sakti h ki agr limit co-domain m aa rehi h toh convergent sequence hogi ....example , a: N to [0,1] agr humne an =1/n le liya or ye 0 pe converge krti h or 0 co domain m aa raha h........convergent seq implies bounded seq but converse need not be true . eg (-1)^n