A Nice Factorial Equation

Поділитися
Вставка
  • Опубліковано 2 лют 2025

КОМЕНТАРІ • 10

  • @MsAcpaul
    @MsAcpaul 9 годин тому

    All up I liked this problem. Thankyou for it!

  • @RAG981
    @RAG981 4 години тому

    At the beginning, it would have been much quicker to say 1/(n-1)! = n/n!

  • @Qermaq
    @Qermaq 14 годин тому

    Here's something you might find interesting. Pick two integers m and n, and find |m^2 - n^2|. What prime is most likely to divide this value?
    Subtle hint: (2a - 1)/(a^2)

  • @nasrullahhusnan2289
    @nasrullahhusnan2289 7 годин тому

    [1/(n-1)!][1-(1/n)]=⅛
    If n=5 the LHS

  • @MsAcpaul
    @MsAcpaul 9 годин тому

    Was anyone else thinking as he subtracted the fractions wow this is a long winded way to do that? n - 4 is obvious once you see that n(n-2)! = 8. I did my solutions a little differently as I tool the reciprocal of the fractions after subtracting the two terms.

  • @brianwade4179
    @brianwade4179 12 годин тому +1

    1/(n-1)! - 1/n! = 1/8
    n/n! - 1/n! = 1/8
    (n-1)/n! = 1/8
    n! = 8(n-1)
    n! = 4(n-1)2
    By inspection n=4

  • @bsmith6276
    @bsmith6276 21 годину тому +1

    You took the long way to find a common denominator. n! is a multiple of (n-1)!, so the common denominator is just n! so we need only to multiply the numerator and denominator of the 1/(n-1)! by n.
    1/(n-1)! - 1/n! = n/n! - 1/n! = (n-1)/n! = (n-1)/(n*(n-1)*(n-2)!) = 1/(n*(n-2)!)

  • @اسماعیلخسروی-خ6ظ
    @اسماعیلخسروی-خ6ظ 9 годин тому

    ❤❤

  • @rob876
    @rob876 19 годин тому

    n/n! - 1/n! = 1/8
    (n-1)/n! = 1/8
    1/n(n-2)! = 1/8
    n(n-2)! = 8
    n(n-2)! = 2*4
    n = 4

  • @alexandermorozov2248
    @alexandermorozov2248 21 годину тому

    It turns out that there are an infinite number of solutions, including 2 solutions for n>0 😘